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Abstract—Over time, software tends to grow more complex,
hampering understandability and further development. To reduce
accidental complexity, model-based rejuvenation techniques have
been proposed. These techniques combine reverse engineering
(extracting models) with forward engineering (generating code).
Unfortunately, model extraction can be error-prone, and vali-
dation can often only be performed at a late stage by testing
the generated code. We intend to mitigate the aforementioned
challenges, making model-based rejuvenation more controlled.

We describe an exploratory case study that aims to rejuvenate
an industrial embedded software component implementing a
nested state machine. We combine two techniques. First, we
develop and apply a series of small, automated, case-specific
code refactorings that ensure the code (a) uses well-known
programming idioms, and (b) easily maps onto the type of
model we intend to extract. Second, we perform model-based
rejuvenation focusing on the high-level structure of the code.

The above combination of techniques gives ample opportunity
for early validation, in the form of code reviews and testing,
as each refactoring is performed directly on the existing code.
Moreover, aligning the code with the type of model we intend to
extract significantly simplifies the extraction, making the process
less error-prone. Hence, we consider code refactoring to be a
useful stepping stone towards model-based rejuvenation.

I. INTRODUCTION

Embedded software is typically reused in multiple product
generations, with changes being made for each generation.
Unfortunately, as observed by Lehman [1], “as an evolving
program is continually changed, its complexity . . . increases
unless work is done to maintain or reduce it.” In other words,
software modernization is required. However, this turns out
to be challenging. Industrial practitioners [2] indicate hurdles
such as limited knowledge of the software to be modernized,
which, e.g., makes it hard to identify business logic.

Multiple techniques have been proposed to address the
challenges related to software modernization, such as code
refactoring [3], [4] and model-based rejuvenation [5]–[8], with
the latter combining reverse engineering (extracting abstract
models) with forward engineering (generating new code). In
spite of this, challenges remain. Pizka [9] observes that “the
impact of refactoring is limited if the code base has gone
astray for a longer period of time.” The risk of introducing
bugs is also widely recognized [10], and validating correctness
can often only be done at a late stage by testing of the changed
or newly generated code [3]–[5], [7], [8].

In this paper, we propose a mitigation strategy for the
challenges sketched above. The strategy (see Fig. 1) com-

bines code refactoring with model-based rejuvenation (Extract-
Transform-Generate). Specifically, to ensure that the code
• uses well-known programming idioms, and
• easily maps onto the type of model we intend to extract,

we first refactor the code in a number of small, case-specific
steps. Once done, we apply model-based rejuvenation.
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Figure 1. Code refactoring and model-based rejuvenation. The solid arrows
represent our proposed strategy, which combines refactoring and rejuvenation.
The dashed arrows represent a more traditional rejuvenation approach that
lacks explicit refactoring and transformation steps.

Although performing a number of small refactoring steps up
front may sound counter-intuitive, as we eventually generate
new code, the benefits of this approach are four-fold:

1) The refactoring steps give ample opportunity for early
validation, as changes can be easily reviewed and tested.

2) Ensuring that the code easily maps onto the type of
model we intend to extract simplifies model extraction.

3) As low-level code fragments have been tested and follow
an idiomatic style after refactoring, we can re-use them
as part of the rejuvenated code, allowing us to abstract
from these fragments and focus on the high-level code
structure during model extraction.

4) Aligning the refactored code and the extracted model
means that the extracted model has clearly defined
semantics in terms of the code.

Research Method and Contributions: We conducted the
reported research as an exploratory case study that aimed to
modernize an industrial software component (see Sect. II).
Our main contribution is the formulation of a strategy making
model-based rejuvenation more controlled. We report on the
strategy in Sects. III and IV in the context of our case study.

II. INDUSTRIAL CASE STUDY

Our case study concerns a Controller Area Network (CAN)
adapter from a large embedded system. The adapter, written in
C++, was hand coded and implements a nested state machine,
with states and substates, that handles incoming messages and



1 StateEnum StateInit::ReceiveResp(Resp* pCanMsg) {
2 CanModuleStateEnum state = GetState();
3 m_iReceivedMsg++;
4 if (m_iReceivedMsg == MODULE_STATUS) {
5 VersionRequest *pNewCanMsg = NULL;
6 if (m_bPost) {
7 m_bPost = !(pCanMsg->GetPostError());
8 }
9 if (pCanMsg->GetRuntimeError()) {
10 AddDefectiveControl(pCanMsg->GetControlID());
11 state = FATAL;
12 } else {
13 pNewCanMsg = new VersionRequest;
14 pNewCanMsg->SetID(m_byID);
15 SendMsg(pNewCanMsg);
16 }
17 } else {
18 m_iReceivedMsg--;
19 }
20 return(state);
21 }

Figure 2. Coding style of the original code

performs some data processing. The goal is to modernize
the adapter to facilitate the implementation of envisioned
architectural changes in future product generations.

The state machine consists of 14 states implemented using
the state pattern [11], with two states inheriting from a single
abstract, partial state. Each state uses up to 13 variables to
store state-specific data. The substates, of which there are 69,
are distributed over eight states, with the maximum number of
substates of a state being 13. The substates are implemented
using enumerated types and their C++ integer representation.
There are 27 incoming message types.

The adapter has evolved over a long period and functions
reliably, but is considered difficult to understand, maintain, and
extend. Inspection of the code indicated the use of a number
of unconventional programming idioms:
• the integer variables representing substates are often

changed multiple times during the handling of a single
message and generally hold values that are off-by-one (an
increment operation occurs just before every use);

• large non-encapsulated code fragments are used to im-
plement elementary behavior such as sending messages.

Figure 2 illustrates the coding style. The code handles incom-
ing messages of type Resp in state StateInit and returns
the next state. The integer variable m_iReceivedMsg rep-
resents a substate. Lines 5–16 encode the behavior in substate
MODULE_STATUS for message type Resp.

Intended Model and Extraction Approach: As the adapter
implements a state machine, we would like to obtain a state
machine model as part of our rejuvenation effort. To this end,
we can either apply automata learning techniques or static code
analysis techniques. As the adapter performs some amount of
data processing, which automata learning techniques do not
handle well, we opted for static code analysis techniques.

III. IMPROVING PROGRAMMING IDIOMS

As highlighted above, the CAN adapter uses some un-
conventional programming idioms, hindering understandabil-
ity. To improve understandability, we began by applying a
number of refactorings that substituted the idioms by more

1 StateEnum $class::$method($$args) {
2 if (m_iReceivedMsg == $substate) {
3 // REPLACE: $boolVar = $boolVar && $boolExp;
4 if ($boolVar) {
5 $boolVar = $boolExp;
6 }
7 }
8 }

Figure 3. An example refactoring specified in our refactoring language

conventional ones. The applied refactorings were selected
by hand, and were mostly case specific (e.g., because no
standard refactorings exist that can turn an off-by-one substate
representation into a non-off-by-one representation).

A. Refactoring Technique

After manually selecting appropriate refactorings, we want
to apply them automatically, as this allows for repeatability
over, e.g., multiple development branches. Moreover, to not
interfere with active development, we do not want annotate
the source code that is to be refactored to indicate where
refactorings should be applied.

1) Refactoring Language: To satisfy the above constraints,
we specify our refactorings in a separate language. We do
not aim for the language to be fully generic; the language
should simply suffice for our industrial case. As the software
developers we work with are already familiar with C++, the
language is defined as an extension of C++. This allows the
developers to review proposed refactorings without having to
learn a completely new language.

The refactoring language consists of several elements that
express which refactoring operations to apply, to which code
fragments in which contexts, and in which order and how
often. Figure 3 showcases some of these elements. The refac-
toring operation is specified via an annotation (line 3) that
occurs immediately above the code pattern to which it should
be applied (lines 4–6). The context in which the operation
may be applied surrounds the operation and pattern (lines 1–
2 and 7–8). As a convention [8], an identifier starting with a
single $ denotes a placeholder for a single syntactical element
(expression, function argument, . . . ), and an identifier starting
with $$ denotes a list of placeholders. Although not shown,
we use annotations similar to those for refactoring operations
to order refactorings and express how often they should be
applied.

2) Refactoring Operations: A refactoring operation either
specifies how a certain code fragment should be changed, or
instructs the refactoring engine to extract certain values for
later use. We can also specify side-conditions, e.g., to indicate
whether an operation should be applied when the code being
refactored has side-effects.

Code-changing refactoring operations come in two varieties:
• replacement of concrete syntax patterns (see Fig. 3), and
• direct manipulation of the abstract syntax tree (AST).

In both cases we build on the C++ parser that is part of the
Eclipse C/C++ Development Tools (CDT)1. Building on this

1http://www.eclipse.org/cdt/



1 StateEnum StateInit::ReceiveResp(Resp* pCanMsg) {
2 CanModuleStateEnum state = GetState();
3 if (InSubState(MODULE_STATUS)) {
4 m_bPost = m_bPost && !pCanMsg->GetPostError();
5 if (pCanMsg->GetRuntimeError()) {
6 AddDefectiveControl(pCanMsg->GetControlID());
7 state = FATAL;
8 } else {
9 SendMsg(new VersionRequest(m_byID));
10 ChangeSubState(VERSION_REQUESTED);
11 }
12 }
13 return state;
14 }

Figure 4. Coding style after refactoring

parser side-steps the need to write our own, which is a non-
trivial task.

Initially, we focused only on replacement of concrete syntax
patterns, which software developers find intuitive. However,
we observed that some operations are more conveniently
expressed at the AST-level, such as:
• inlining methods, to avoid having to specify complete

method bodies;
• extracting methods, to avoid having to specify method

bodies twice (once for creating methods, and once for
identifying locations where calls should be introduced);

• removing unused variables, to avoid having to specify
what “unused” means using concrete code patterns;

• combining series of assignments to the same variable,
to avoid having to explicitly specify the multitude of
possible concrete assignment patterns;

• moving statements backwards and forwards by swapping
them with independent predecessor and successor state-
ments, again to avoid the multitude of possible patterns.

B. Industrial Case Study

Although all states and substates of the CAN adapter all
have different functionality, their original coding patterns were
all very similar, and hence they could be refactored in similar
ways. We applied the following refactoring steps in order,
where steps 3–5 depend on steps 1–2:

1) removing dead code, and declaring local variables as late
as possible in the closest encompassing scope;

2) ensuring that updates to (sub)states occur as late as pos-
sible and are not mixed with the sending of messages;

3) replacing updates to substates via integer operations
with direct assignments of the members of the relevant
enumerated types, and ensuring these are not off-by-one;

4) encapsulating all operations required for message cre-
ation in message class constructors;

5) making logging homogeneous, and introducing auxiliary
methods encapsulating data processing.

The result of applying the refactorings to the code of Fig. 2
can be found in Fig. 4. The first refactoring is obviously
generic, while the others are case specific. All refactorings
aim to improve the understandability of the code.

The individual refactorings were easily validated (by means
of code reviews and existing test suites), and integrating the

results into the code base went smoothly. The refactorings
could also easily be adapted to other development branches,
and the developers of the adapter considered the refactored
code to be much easier to understand.

C. What We Learned

We learned the following while refactoring the adapter:
• specifying case-specific refactorings is both about the

operations and the context in which they are applied;
• specifying refactorings is sometimes done best at the

concrete syntax-level, and sometimes at the AST-level;
• case-specific refactorings enable code changes that are

only valid for the specific case;
• incrementally applying small, case-specific refactorings

facilitates early validation.

IV. REDESIGNING THE HIGH-LEVEL STRUCTURE

The refactoring steps from the previous section addressed
the main issues with the CAN adapter identified in Sect. II.
However, the steps did not improve insight into the overall
behavior of the implemented state machine. To improve in-
sight, we next visualized the state machine by extracting its
high-level structure (again using CDT’s C++ parser), while
ignoring low-level details. The visualization provided some
new insights and could be kept up-to-date by regenerating it,
but its size was substantial given the number of states and
substates, which still made it difficult to fully comprehend the
state machine.

We next investigated whether we could improve the high-
level structure of the code to reduce the need for a separate
visualization. The key observation we made was that the code
was structured from the top down (i.e., viewed from class
definitions, via method definitions, to control statements) as

state → message type → substate → logic
whereas the visualization was structured as

state → substate → message type → logic.
Although the top-down structure of the code reduces code
duplication when incoming messages are handled similarly
across multiple substates, the top-down structure of the visu-
alization is more useful when trying to understand the code’s
behavior in terms of the order of operations from entering a
certain substate, via processing of various incoming messages,
to exiting the substate.

To transform the top-down code structure to match the one
used in the visualization, we first created a model by extracting
the high-level structure of the code. Thereafter, we transformed
the model to give it the appropriate top-down structure, and
we generated new code by combining the transformed model
with low-level code fragments that we had retained.

A. Rejuvenation Technique

Building again on CDT’s C++ parser, we parse the relevant
source files without expanding any #include directives. We
then extract a high-level model that is close to the structure
of the original source code, using pattern matching on both
concrete syntax patterns and AST patterns. We retain low-level



code details by saving relevant code fragments along with the
high-level model, as proposed by [8].

To validate the extraction and give the extracted model
semantics, we develop a code generator in Xtend2 that is able
to regenerate the original code (apart from formatting) from
the high-level model and the retained low-level fragments.
Thereafter, we transform the model to obtain the desired high-
level structure, and use Xtend to generate new code from
the transformed model and the retained low-level fragments.
Lastly, we use CDT’s code formatting capabilities to format
the new code (to nicely integrate the retained fragments).

B. Industrial Case Study

Once we started to extract a state machine model from the
CAN adapter code, we realized that although we did improve
the structure of the code while refactoring, extraction was not
as straightforward as it could be. Therefore, before proceeding,
we applied a number of additional refactorings:
• introducing explicit state assignments in simple cases

where the state does not change (for homogeneity);
• replacing if-statements with guards containing a disjunct

with an InSubState call by a chain of if-then-else
statements (to isolate InSubState);

• replacing if-statements with guards containing a conjunct
with an InSubState call by nested if-statements (again
to isolate InSubState);

• moving calls to the InSubState method out of helper
functions, by inlining fragments of these functions.

The above refactorings were geared towards making the state
machine, and hence the high-level structure, more explicit. We
did not perform these steps earlier, as they somewhat increased
the number of lines of code.

Once we applied the above refactorings, model extraction
was straightforward, with the inheritance from partial states
being the only source of complexity. After extraction we
transformed the model to match the top-down structure of our
visualization, and generated new code.

Figure 5 presents the result of applying the above steps to
the code of Fig. 4. The depicted method handles all messages
that can be received in substate MODULE_STATUS of state
StateInit. Of course, as the steps changed the high-
level structure, their impact is difficult to gauge from code
fragments only. However, the adapter’s developers considered
the code much better to understand even without a separate
visualization, although code size increased slightly.

C. What We Learned

We learned the following while rejuvenating the adapter:
• aligning the original code with the type of model we in-

tend to extract simplifies the extraction, and also enables
early validation through easy regeneration of the code;

• retaining low-level code fragments and linking these to
the extracted model allows us to focus on the high-level
behavior in the model;

2https://www.eclipse.org/xtend/

1 StateEnum StateInit::ModuleStatus(Msg* pMsg) {
2 CanModuleStateEnum state = GetState();
3 if (dynamic_cast<Resp*>(pMsg) != NULL) {
4 Resp* pCanMsg = dynamic_cast<Resp*>(pMsg);
5 m_bPost = m_bPost && !pCanMsg->GetPostError();
6 if (pCanMsg->GetRuntimeError()) {
7 AddDefectiveControl(pCanMsg->GetControlID());
8 state = FATAL;
9 } else {

10 SendMsg(new VersionRequest(m_byImageID));
11 ChangeSubState(VERSION_REQUESTED);
12 }
13 }
14 return state;
15 }

Figure 5. Coding style after refactoring and rejuvenation

• code refactoring can act as a useful stepping stone to-
wards model-based rejuvenation;

• changing the high-level code structure can reduce the
need for separate visualizations.

V. THREATS TO VALIDITY

Threats to internal validity come from the way in which we
carried out our case study. Our study focused on qualitative
aspects and ignored quantitative aspects. The time to create
the case-specific refactoring steps was not considered.

Threats to construct validity come from the way in which
we evaluated our case study. We did not attempt to transform
the considered adapter using different approaches.

Threats to external validity come from the way in which
our results will generalize to other software components. Our
case study only considered a single adapter. We believe that
the presented approach could have helped in case studies such
as [8], but more research is needed to determine its generality.

VI. RELATED WORK

We discuss various avenues of related work.

A. Model-Based Methods for Software Modernization

The literature review from [12] compares in detail fifteen
different model-driven reverse engineering approaches, and
observes that the approaches and applications are diverse.

Industrial case studies on model-based rejuvenation are
presented in [5], [8]. The study from [5] employs models
based on generic concepts such as data structures, algorithms,
and GUI elements. Any source element that does not easily
fit the model is reported to the user. The study from [8]
employs domain-specific models, and inspired us to retain low-
level code fragments during rejuvenation. Contrary to us, the
authors of [8] do not first attempt to align the code with the
type of model they intend to extract.

An industrial case that combines model extraction and
code refactoring is presented in [13]. Architectural models
are extracted to give insight into code structure, after which
desired model changes are specified. Next, case-specific code
refactorings are derived, but no rejuvenation is performed.



B. Code Refactoring Tools

Most refactorings are performed in batches [14], and
developer-specified refactorings are sometimes seen as the
Holy Grail of refactoring [15]. Unfortunately, tooling for
developer-specified refactorings is currently lacking [10].

Frameworks for specifying refactorings generally only allow
refactorings to be specified at the AST-level. Examples of
such frameworks are Clang’s C++ refactoring engine3, the
Java refactoring engine presented in [16], and the MoDisco
framework [17], which has been used to perform large-scale
Java refactorings.

Specifying C/C++ refactorings using concrete syntax pat-
terns is supported by a limited number of tools. Coccinelle [18]
enables developers to define C refactorings, and Rascal [19]
supports C/C++ via its ClaiR4 module [20]. DMS [21] and
TXL [22], which focus on program transformations including
restructuring, also support concrete C/C++ syntax patterns, and
have been used in commercial applications.

C. Extracting State Machine Models from Code

To enhance insight in software, [23] describes a method
for extracting visual representations of state machines imple-
mented in C. The method is based on matching specific im-
plementation patterns. Nested state machines and conditional
state transitions are left as future work, although the authors do
give examples that exhibit a similar kind of top-down structure
as the state machine from our case study (see Sect. IV).

An industrial case study on extracting flat state machine
models from C code is described in [24]. The approach taken
in the study is similar to ours, namely, recognizing occurrences
of specific implementation patterns that are used consistently
in the considered code base. Semi-automated techniques for
extracting state machines from C code that does not follow
specific implementation patterns are presented in [25] in the
context of embedded control software.

VII. CONCLUSIONS AND FUTURE WORK

As we have shown, code refactoring can be used to make
model-based rejuvenation a more controlled software modern-
ization technique. Code refactoring allows for early validation,
and can be used to simplify the extraction process.

In future work we would like to develop more sophisti-
cated techniques for specifying, applying, and validating case-
specific refactoring operations, to allow for easier refactoring
of code. We would also like to establish whether refactoring
after rejuvenation could be beneficial.

ACKNOWLEDGMENTS

This research was carried out as part of the Vivace program
under the responsibility of ESI (TNO) with Royal Philips as
carrying industrial partner. The Vivace program is supported
by the Netherlands Organisation for Applied Scientific Re-
search TNO.

3https://clang.llvm.org/docs/RefactoringEngine.html
4https://github.com/cwi-swat/clair

We would like to thank Peter Blom and Roel Kolman of
Philips for their technical support and their help integrating
the modernized code.

REFERENCES

[1] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[2] R. Khadka, B. V. Batlajery, A. Saeidi, S. Jansen, and J. Hage, “How do
professionals perceive legacy systems and software modernization?” in
ICSE’14, 2014, pp. 36–47.

[3] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1999.

[4] M. C. Feathers, Working Effectively with Legacy Code. Prentice Hall,
2004.

[5] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.-M. Jézéquel,
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