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Abstract

Term rewriting is used for the modelling of computation in declarative
languages and proof systems. Infinitary term rewriting is a class of mod-
els designed to model lazy languages with potentially infinite data struc-
tures, and infinitary logic. We define infinitary Combinatory Reduction
Systems (iCRSs), thus providing the first notion of infinitary higher-order
rewriting. The systems defined are sufficiently general that ordinary in-
finitary term rewriting and infinitary λ-calculus are special cases; using
novel proof techniques, we generalise almost all fundamental results from
those settings. Specifically, the following are proved:

1. Every reduction in a fully-extended, left-linear iCRS is compressible
to a reduction of length at most ω.

2. Every complete development of an orthogonal set of redexes in an
iCRS ends in the same term.

3. Every fully-extended, orthogonal iCRS is confluent modulo identifi-
cation of hypercollapsing subterms.

4. Any outermost-fair, fair, or needed-fair strategy is normalising for
the class of fully-extended, orthogonal iCRSs.

∗Parts of this paper have previously appeared as [20] and [21].
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1 Introduction

Term rewriting is a branch of mathematics and computer science that can gener-
ically model declarative programming, logic, universal algebra, and automated
theorem proving. In term rewriting, equations are used as directed replacement
rules where left-hand sides are replaced by right-hand sides, but not vice versa.

From a programming perspective, term rewriting affords easy modelling of
function declaration and evaluation in declarative programming languages such
as Haskell, Lisp, ML, and Prolog. In these languages, functions are defined
by equations, and a function call foo(a) is, conceptually, evaluated by replacing
the call by the body of the function foo(x), actual parameter a being substituted
for formal parameter x.

In, say, Haskell, a simple function declaration to convert a list of integers
to a list containing each of the integers multiplied by three would be:

treblelist(n:ns) = (n∗3) : treblelist(ns)

treblelist([]) = []

In a call treblelist(a) during computation — where we assume a 6= [] — the
call is matched against a pattern of the form treblelist(n:ns), and bindings
are set up for the pattern variables n and ns. The pattern is then replaced by
the right-hand side of the rule, i.e. the list (n∗3) : treblelist(ns), and the
computation continues. Thus, the function declaration above amounts to a set
of two directed replacement rules, a rewriting system.

From a logical perspective, rewriting has its roots in equational logic where
formulae are terms and equations describing relations between formulae give rise
to rewrite rules; thus, proof systems (that may prove properties of programs or
other objects) are naturally modelled using rewriting systems [3] — automated
proof assistants such as Isabelle [28] and Coq [36] are based on term rewriting,
e.g. in Coq proofs are terms and cut elimination is rewriting.

Our research in term rewriting is mostly motivated by programming; the
remainder of the introduction thus focuses on that perspective.

Lazy Programming One particularly interesting feature of modern program-
ming is the possibility to work explicitly with data structures that are seman-
tically infinite — even though, in all concrete applications, program execution
only examines a finite part of the data structure. For example, in Haskell,
the list [0..] denotes the infinite list of non-negative integers; indeed, the call
treblelist([0..]) returns the infinite list of non-negative multiples of three.
The infinite list is a first-class citizen and can be passed as an argument to a
function, or can be returned as a result.

In Haskell and other languages such lists make perfect sense due to lazy
evaluation: The call treblelist([0..]) returns an infinite list, but does not ac-
tually compute any elements of it until program execution specifically asks for
them. Programs may query as many elements as is possible on the concrete
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hardware the program is running on; moving the code to more powerful hard-
ware will simply increase the number of elements of the list we can consider in
a concrete computation.

If we choose the obvious route of modelling declarative languages by term
rewriting, the presence of infinite lists generates subtle issues. The (first many)
elements of [0..] must somehow be evaluated in concrete programs; consider the
following small code snippet:

idl(n:ns) = n:idl(ns)

idl([]) = []

which is simply the identity function on lists. Now, the result of the call
idl([0..]) must be some piece of data that represents an infinite list. Should
the call idl([0..]) return the term [0..] or something else? If the first option
is chosen, what about functions f that are semantically equivalent to idl, but
might have much more involved definitions? Rice’s Theorem prevents us from
determining whether f(x) = idl(x) for all x, so we cannot always ‘guess’ if
f([0..]) should return [0..]. Hence, a system of rules for modelling such compu-
tation cannot in general hope to have anything remotely resembling [0..] as the
output value of f([0..]).

We could go for the second option and simply return whatever (infinite)
data structure the computation of f([0..]) would build when given sufficient
time. This data structure could be a wrapped ‘black box’ that could be passed
around to other functions that could use it to generate as many elements as
were needed. This is a perfectly viable solution, but still leaves the question
open of how to compare such infinite data structures. For instance, how would
we prove that the black box actually equals idl([0..])? A possible solution is
simply to let the return value of f([0..]) be the infinite term that computation
of the call would yield if it were allowed to go on indefinitely, i.e. [0, 1, 2, ...].

We are then faced with the problem of how to succinctly represent such
infinite terms, how to ensure that computation — application of rewrite rules
— achieves progressively better approximations to the final data structure as
the number of steps in the computation increases to infinity. These problems
are the motivation behind research in infinitary term rewriting.

Infinitary Rewriting Standard techniques in term rewriting of finite terms
can be used to prove interesting properties of declarative programs, e.g. ter-
mination; but these techniques now require serious rethinking: A program ter-
minating on finite lists may fail to terminate on infinite ones (e.g. a program
iterating over each element of the list).

Alas, most of the truly useful theory of ordinary term rewriting of finite terms
turns out, unfortunately, to be inapplicable when infinite terms are involved.

An easy and powerful way around many of these problems is to define a
notion of convergence of program execution: Each computation step can be
viewed as an element in a sequence of terms; the sequence may be infinite, but
it will converge to some well-defined result, e.g. an infinite list.
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If the notion of convergence is defined properly, proving a property of an
infinite sequence can then have implications for finite program executions as
well. This is the reason for introducing the notion of so-called strong con-
vergence, defined by Kennaway et al. in their landmark paper [18]. Strong
convergence employs both the ordinary theory of metric spaces and a special
‘syntactic property’ on rewrite steps. The intuition is that idealised ‘infinite’
computations should never touch the ‘top’ part of a term, e.g. the finite pre-
fixes of an infinite list after some specific finite number of computation steps
have been performed: Thus, greater and greater initial parts of the ‘result’ of
a program will be completed in finite time. If these successively larger parts
then converge in some appropriate metric on terms, they are said to converge
strongly to their limit — a possibly infinite term that may be viewed as the
result of the — idealised — infinite computation. Conversely, if we shut down
the computation after a finite number of steps, strong convergence ensures that
we will have a good approximation to the final ‘ideal’ result.

Example 1.1. The computation of treblelist([0..]) transforms arbitrarily long
finite prefixes of [0..] into lists with their elements multiplied by three. We can
make this statement more formal by showing that the sequence of rewrite steps
that models the computation of treblelist([0..]) generates a sequence of terms
that converges strongly to the list [0, 3, 6, 9, . . . ].

Strong convergence requires a metric in the ordinary sense; such a metric is
given by letting, two (finite or infinite) lists have distance 2−k from each other
if they have the same first k − 1 elements, but their kth elements differ from
each other.

In the above we have:

treblelist([0..]) → 0 : treblelist([1..])

→ 0 : 3 : treblelist([2..])

→ 0 : 3 : 6 : treblelist([3..])

→ · · ·

As [0, 3, 6, 9, ..] is syntactic sugar for 0 : 3 : 6 : 9 : . . ., the nth element in the
sequence of terms in the computation above is at a distance of 2−n from the
infinite term [0, 3, 6, 9, ...], i.e. the distance between two successive computation
steps converges to 0 as the number of computation steps goes to infinity. In
addition, no computation steps are performed in the initial part of the result (the
part of the list containing the first n elements) after n steps have been performed
— the steps occur ‘deeper’ in the terms — i.e. we can extract meaningful partial
results after finite time has elapsed.

Higher-Order Functions The theory of first-order programming with po-
tentially infinite data structures has been developed successfully using infinitary
rewriting since the mid-nineties. However, first-order constructs are insufficient
for the modern programmer — his arsenal includes higher-order functions (func-
tions taking functions as arguments) that cannot be modelled by the first-order
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constructs of term rewriting without lengthy and unintuitive encodings. For
instance, the function map that applies a function to each element of a list in
succession:

map f (x:xs) = (f x) : map f xs

map f [] = []

The classical ‘theorist’s approach’ to handling higher-order functions such as
map is to simply appeal to the machinery of λ-calculus [4]. Function evaluation
in λ-calculus is expressed through its single rewrite rule

(λx.M)N →M [x := N ] ,

where M [x := N ] is the substitution of the parameter N for the free occurrences
of variable x in the function body M . The extension of λ-calculus to infinite
terms and computations [16] affords an idealised model of function evaluation,
including higher-order function evaluation that can handle constructs such as
map, but it is quite awkward to take a real-world functional program and encode
it directly in λ-calculus.

A much more straightforward encoding is possible by using one of the vari-
ants of so-called higher-order rewriting [1, 22, 24, 29, 40, 12]. For instance, in
the syntax of one of these variants — Combinatory Reduction Systems (CRSs)
— the definition of map becomes:

map([z]F (z), cons(X,XS)) → cons(F (X), map([z]F (z),XS))

map([z]F (z), nil) → nil

i.e. just a de-sugared version of the declaration of map where variable bindings
have been made explicit.

It is important to note that although the syntax of the different forms of
higher-order rewriting varies, the forms are just more-or-less equivalent ways of
easing the burden on the programming language designer: If he is willing to
spend a few minutes expressing his syntax as a higher-order rewriting system of
some form, the entire theory developed for that particular form can be brought
to bear on his problems. For instance, if his syntax satisfies a few easily check-
able conditions — called ‘orthogonality’ in the rewriting vernacular — he can
appeal to standard results to show a number of results related to program be-
haviour. For instance, he can show that his language will be deterministic — by
appealing to the so-called ‘confluence property’. By appealing to other standard
techniques, he can show that there will be execution strategies for any program
in his language that always will, if at all possible, get around all ways of going
into infinite loops and actually yield a well-defined result — called ‘normalisa-
tion’. All of these desiderata will be available to the language designer without
the onus of him having to prove it using the specifics of his own invention1.

1Indeed, this does away with the ‘. . . prove the Church-Rosser property by the method of
Tait and Martin-Löf in the style of Aczel (see appendix)’-sentence found in many papers on
declarative programming.
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Infinitary rewriting and higher-order functions Unfortunately, higher-
order functions like map cannot be treated by the machinery developed in in-
finitary rewriting so far. Graph rewriting [31] affords a way of treating such
functions in the setting of lazy programming, but (higher-order) graph rewrit-
ing does not yet have the same array of generally applicable results that can be
brought to bear as does traditional term rewriting. Thus, a true extension of
infinitary rewriting to the higher-order setting should be defined and as many
of the ‘usual’ results as possible should be re-derived.

This paper is devoted to exactly that. We define infinitary Combinatory
Reduction Systems and thus extend the modelling of lazy declarative program-
ming using infinitary term rewriting to the higher-order case. In doing so, we
generalise most of the results known to hold for infinitary (first-order) term
rewriting and for infinitary λ-calculus.

We note that as rewriting is traditionally also used for computing with equa-
tional logic, our work also allows for modelling of formulae in infinitary logic
with quantifiers and bound variables [26] in the same fashion as is usually done
in ordinary rewriting with ordinary logic; we do not yet know whether this has
any implications for the possible use of infinitary logic in any practical matters.

1.1 Brief History of Infinitary Rewriting

The approach of considering infinite terms by metric spaces was originally pi-
oneered by Arnold and Nivat [2]; alternative approaches considered defining
infinite terms by means of partial functions [13, 6].

Rewriting of infinite terms was first considered in the context of first-order
rewriting where rewriting systems were equipped with a very liberal notion
of potentially infinite reduction, called weak or Cauchy convergence, by Der-
showitz, Kaplan, and Plaisted [7, 8]. Upon discovering subtle problems with
the approach, the authors published a final and corrected version of their re-
sults [9], but many of the standard results from ordinary term rewriting could
not be recovered.

To alleviate this, Kennaway, Klop, Sleep, and De Vries, inspired by Farmer
and Watro’s paper [11], considered a more restrictive notion of infinite reduction,
based on so-called strong convergence, that has become the de facto standard in
infinitary rewriting; their results were published in the landmark paper [18] that
pinned down basic results related to confluence and normalisation for first-order
term rewriting systems with potentially infinite terms and reductions. The first
step towards higher-order infinitary rewriting was taken by the same authors
when they considered infinitary λ-calculus [16].

The field has since expanded, leading to consideration of so-called meaning-
lessness (identifying a class of terms essentially having no ‘good’ definable se-
mantics) [19], observational equivalence [10], alternative approaches to defining
infinite terms and their accompanying rewrite relation [5], modular properties
[34], and uniform normalisation [23].
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1.2 Overview of Present Paper

We define and prove basic properties of infinitary Combinatory Reduction Sys-
tems. The technical development follows mostly the tried-and-true technique
in rewriting of establishing properties of developments of sets of redexes in so-
called orthogonal systems. We combine techniques from infinitary rewriting
with methods for proving reduction strategies normalising in ordinary (finitary)
rewriting to prove confluence modulo results for orthogonal iCRSs and to prove
that a number of strategies are normalising for such systems.

The main contributions of the paper are threefold:

• The introduction of several new techniques for proving results in infinitary
rewriting that go beyond the extant tools so far seen in the field; in partic-
ular, the use of essentiality — see Section 8 — is worthy of mention. These
techniques are substantially different from prior known techniques used in
first-order infinitary rewriting and might possibly have uses elsewhere.

• An extension of the confluence (modulo) results so far known in infinitary
rewriting to the general higher-order setting. In particular, our results
generalise those already known to hold for (first-order) infinitary rewriting
and infinitary λ-calculus2.

• An extension of the normalisation results of infinitary rewriting by using
the technique of essentiality to show that needed-fair, fair, and outermost-
fair reductions are normalising.

It should be noted that Lisper has defined a separate notion of infinitary
Combinatory Reduction Systems in [25] and proves a number of preliminary
results for these. His notion of infinite terms is essentially an instance of ours:
It contains only rules with finite right-hand sides, and many of the results con-
cerning, e.g. compression, impose further restrictions on the systems considered.
The restrictions materialise in several crucial places, e.g. when unfoldings for
higher-order rules are considered, Lisper recommends switching to a first-order
combinator system.

Structure of the paper The specific layout of the paper is as follows: Sec-
tion 2 contains preliminary definitions. Sections 3 and 4 introduce terms and
rewriting. Section 5 proves that every well-behaved rewrite sequence of transfi-
nite length can be ‘compressed’ to one of length at most ω. Sections 6, 7 and
8 set up fundamental properties of orthogonal systems and the main tools in
such systems that will be used to prove later properties; Section 8 in particular
introduces the technique of essentiality which is a fulcrum of both the conflu-
ence and the normalisation results to follow. Section 9 expounds one of the

2It should be noted that we extend our preliminary findings in [21]: There, a confluence
modulo result was proven for systems where every rule had a finite right-hand side. In the
present paper, we strengthen that result by allowing infinite right-hand sides.
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main results of the paper: That fully-extended, orthogonal systems are conflu-
ent. Section 10 shows that a variety of reduction strategies are normalising for
fully-extended, orthogonal systems. Section 11 concludes and affords pointers
for further work. Appendix A contains the — lengthy — proofs of two key
ancillary results: Proposition 6.6 and Lemma 6.7

1.3 Bluffer’s Guide

Readers with prior knowledge of rewriting and the syntax of (ordinary, finite)
Combinatory Reduction Systems can make do with noting that meta-terms are
simply formed by interpreting the rules for meta-term formation coinductively.
A serious caveat is that ‘infinite chains of immediately nested meta-variables’
must be avoided — see Section 3.4.

For the reader with prior knowledge of infinitary rewriting, we introduce
metrics on terms and transfinite reductions in the usual manner; compression
requires a more substantial analysis than usual due to the fact that nestings
can occur in reduction steps — see Section 5. Due to the problem of redexes
appearing after an infinite number of steps because of variables being ‘pushed
out’ of a term, we are generally forced to require that all rules are fully-extended
— see Definition 4.5.

The main properties of confluence and normalisation are proved by going
through the usual route of giving results for developments of sets of redexes in
orthogonal systems — Section 6. These results hinge upon a version of the no-
tion of paths found in [17], but the related results require a much more involved
treatment in the higher-order setting. Confluence and normalisation are proved
by appealing to a certain technique — essentiality — used for proving nor-
malisation in finitary rewriting, heavily massaged to be applicable here. Paths
are once again needed to ensure that results are applicable to systems with
rules having infinite right-hand sides; this again forces us to construct proofs
markedly different from those of the first-order setting.

2 Preliminaries

Prior knowledge of CRSs [22, 24, 40] and infinitary rewriting [17] is not required,
but will greatly improve the reader’s understanding of the text. Throughout,
infinitary Term Rewriting Systems are invariably abbreviated as iTRSs and
infinitary λ-calculus is abbreviated as iλc.

We assume a signature Σ, each element of which has finite arity. We also
assume a countably infinite set of variables and, for each finite arity, a countably
infinite set of meta-variables. Countably infinite sets are sufficient, given that we
can employ ‘Hilbert hotel’-style renaming. We denote the first infinite ordinal
by ω, and arbitrary ordinals by α, β, γ, . . ..

The set of finite meta-terms is defined as follows:

1. each variable x is a finite meta-term,
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2. if x is a variable and s is a finite meta-term, then [x]s is a finite meta-term,

3. if Z is a meta-variable of arity n and s1, . . . , sn are finite meta-terms, then
Z(s1, . . . , sn) is a finite meta-term,

4. if f ∈ Σ has arity n and s1, . . . , sn are finite meta-terms, then f(s1, . . . , sn)
is a finite meta-term.

A finite meta-term of the form [x]s is called an abstraction. Each occurrence of
the variable x in s is bound in [x]s, and each subterm of s is said to occur in
the scope of the abstraction. If s is a finite meta-term, we denote by root(s) the
root symbol of s.

The set of positions of a finite meta-term s, denoted Pos(s), is the set of
finite strings over N, with ε the empty string, such that:

1. if s = x for some variable x, then Pos(s) = {ε},

2. if s = [x]t, then Pos(s) = {ε} ∪ {0 · p | p ∈ Pos(t)},

3. if s = Z(t1, . . . , tn), then Pos(s) = {ε} ∪ {i · p | 1 ≤ i ≤ n, p ∈ Pos(ti)},

4. if s = f(t1, . . . , tn), then Pos(s) = {ε} ∪ {i · p | 1 ≤ i ≤ n, p ∈ Pos(ti)}.

The depth of a position p, denoted |p|, is the number of characters in p.
Given p, q ∈ Pos(s), we write p ≤ q and say that p is a prefix of q and that q
is a suffix of p, if there exists an r ∈ Pos(s) such that p · r = q. If r 6= ε, we
also write p < q and say that the prefix is strict. Moreover, if neither p ≤ q nor
q ≤ p, we say that p and q are parallel, which we write as p ‖ q.

We denote by s|p the subterm of s that occurs at position p ∈ Pos(s).
Moreover, if q ∈ Pos(s) and p < q, we say that the subterm at position p occurs
above q. Finally, if p > q, then we say that the subterm occurs below q.

3 Terms and Substitutions

We now proceed to define the main objects of study, namely meta-terms and
terms. Furthermore, we define substitutions on terms which will be crucial in
defining the rewrite relation on terms.

As it turns out, the most straightforward and liberal definition of meta-terms
has rather poor properties: Applying a substitution need not necessarily yield
a well-defined term. Therefore, we also introduce an important restriction on
meta-terms: the finite chains property. This property will also prove crucial in
obtaining positive results later in the paper.

3.1 Meta-Terms and Terms

In iTRSs and iλc, terms are defined by introducing a metric over the set of
finite terms and taking the completion of that metric. That is, taking the least
set of objects (with respect to set inclusion) containing the set of finite terms
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such that every Cauchy sequence converges [2, 18, 16] — this set will contain
both the finite and infinite terms. Intuitively, with respect to such a metric, two
terms s and t are close to each other if the first ‘conflict’ between them occurs at
great depth. In iTRSs, a conflict is a position p such that root(s|p) 6= root(t|p).
In iλc, a conflict is defined similarly, but also takes into account α-equivalence.
The metric, denoted d(s, t), is defined as 0 if no conflict occurs between s and t
and is otherwise defined as 2−k, where k denotes the minimal depth such that
a conflict occurs between s and t. We take a similar approach in this paper.

To define terms and meta-terms for iCRSs, we first define the notions of a
conflict and α-equivalence for finite meta-terms. In the definition, s[x → y]
denotes the replacement in s of the occurrences of the free variable x by the
variable y.

Definition 3.1. Let s and t be finite meta-terms. A conflict of s and t is a
position p ∈ Pos(s) ∩ Pos(t) such that:

1. if p = ε, then root(s) 6= root(t),

2. if p = i · q for i ≥ 1, then root(s) = root(t) and q a conflict of s|i and t|i,

3. if p = 0 · q, then s = [x1]s
′ and t = [x2]t

′ and q a conflict of s′[x1 → y]
and t′[x2 → y], where y does not occur in either s′ or t′.

The finite meta-terms s and t are α-equivalent if no conflict exists between them.

The metric is now defined precisely as in the case of iTRSs and iλc:

Definition 3.2. The metric d on the set of finite meta-terms is defined as
follows:

d(s, t) =

{

0 if s and t are α-equivalent

2−k otherwise

where k is the minimal depth such that a conflict occurs between s and t.

Example 3.3. The meta-terms s = [x]Z(x, f(x)) and t = [y]Z(y, f(y)) satisfy
d(s, t) = 0. Moreover, if t′ = [y]Z(y, f(z)), then the only conflict between s and
t′ occurs at position 021 and, hence, d(s, t′) = 2−3 = 1

8 .

Precisely following the definition of terms in the case of iTRSs and iλc, we
define the set of meta-terms.

Definition 3.4. The set of meta-terms is the metric completion of the set of
finite meta-terms with respect to the metric d.

By definition of metric completion, the set of finite meta-terms is a subset
of the set of meta-terms. Moreover, we can uniquely extend the metric d to a
metric on the set of meta-terms, which we also denote by d.

Example 3.5. Any finite meta term, e.g. [x]Z(x, f(x)) is a meta-term. Moreover,
Z(Z(Z(. . .) is a meta-term, as is Z1([x1]x1, Z2([x2]x2, . . .)).
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The notions of a set of positions and a subterm of a finite meta-term carry
over directly to the meta-terms, we use the same notation in both cases.

The set of terms can now be defined like in the finite case [22, 24, 40], i.e. by
barring meta-variables from occurring. The only difference is that meta-terms
now occur in the definition instead of finite meta-terms.

Definition 3.6. The set of terms is the largest subset of the set of meta-terms
such that no meta-variables occur in the meta-terms.

Both the set of (infinite) first-order terms and the set of (infinite) λ-terms
are easily shown to be included in the set of terms.

The definition of context carries over directly from the finite case:

Definition 3.7. A context is a term over Σ ∪ {�} where � is a fresh nullary
function symbol. A one-hole context is a context in which precisely one �

occurs.

Henceforth, we use fn(s) for any n ∈ N and term s to denote the following
inductively defined term:

fn(s) =

{

s if n = 0

f(fm(s)) if n = m+ 1

Moreover, we use fω to denote the term that is the solution of the recursive
equation s = f(s) or more informally f(f(. . . f(. . .))).

As mentioned in the introduction to this section, we shall later define a
restriction on meta-terms called the finite chains property. Intuitively, a chain
is a sequence of contexts in a meta-term that occur ‘nested right below each
other’. Formally:

Definition 3.8. Let s be a meta-term. A chain in s is a sequence of (context,
position)-pairs (Ci[�], pi)i<α, with α ≤ ω, such that for each (Ci[�], pi) there
exists a term ti with Ci[ti] = s|pi

and pi+1 = pi · q where q is the position of
the hole in Ci[�]. If α < ω, respectively α = ω, then the chain is called finite,
respectively infinite.

3.2 Alternative Definition of Meta-Terms and Terms

Above, we followed the beaten path of defining the set of meta-terms as the met-
ric completion of the set of finite meta-terms where finite terms were considered
equal up to α-equivalence. An alternative, and equally reasonable, approach
is to use ordinary syntactic equality on finite meta-terms, to take the metric
completion of the set, and to subsequently define meta-terms as α-equivalence
classes in the resulting set.

To cover as much ground as possible, we now proceed to show that the latter
method is equivalent to the former, in the obvious technical sense. This requires
a massaged version of Definition 3.1:
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Definition 3.9. Let s and t be finite meta-terms. A raw conflict of s and t is
a position p ∈ Pos(s) ∩ Pos(t) such that:

1. if p = ε, then root(s) 6= root(t),

2. if p = i · q, then root(s) = root(t) and q a conflict of s|i and t|i.

Hence, a raw conflict is a conflict in which differences in the encountered
abstractions are considered to be real differences.

Example 3.10. The meta-terms s = [x]Z(x, f(x)) and [y]Z(y, f(y)) have a raw
conflict at position ε. Moreover, s has a raw conflict with [x]Z(x, f(y)) at
position 021.

Definition 3.11. The raw metric dr on the set of finite meta-terms is defined
as follows:

dr(s, t) =

{

0 if s = t

2−k otherwise

where k is the minimal depth such that a raw conflict occurs between s and t.

Definition 3.12. The set of raw pre-meta-terms is the metric completion of
the set of finite meta-terms with respect to the raw metric dr.

As before, the notion of position carries over directly to raw pre-meta-terms.

Example 3.13. We have that Z([x]Z ′(x, y, Z([x]Z ′(x, y, . . .)))) is a raw pre-meta-
term, as are Z(Z(Z(. . .))) and [x]Z(x).

The definition of α-equivalence for finite meta-terms carries over straightfor-
wardly to the set of raw meta-terms, except that coinduction is now involved:

Definition 3.14. Let s be a raw pre-meta-term and x and y variables. Then,
s[x → y] denotes the raw pre-meta-term obtained by replacing in s all of the
occurrences of the free variable x by the variable y, defined coinductively by:

1. x[x→ y] = y,

2. z[x→ y] = z, if x 6= z,

3. ([x]s)[x→ y] = [x]s,

4. ([z]s)[x→ y] = [z](s[x→ y]), if x 6= z,

5. (Z(s1, . . . , sn))[x→ y] = Z(s1[x→ y], . . . , sn[x→ y]),

6. (f(s1, . . . , sn))[x→ y] = f(s1[x→ y], . . . , sn[x→ y]).

Example 3.15. We have

(f([x]Z ′(x, y, . . .)))[y → z] = f([x]Z ′(x, z, . . .))

and
(f([x]Z ′(x, y, . . .)))[x→ z] = f([x]Z ′(x, y, . . .)) .

13



Given the above definition, Definition 3.1 carries over directly to raw pre-
meta-terms. Hence, we can define:

Definition 3.16. The raw pre-meta-terms s and t are α-equivalent, denoted
s =α t, if no conflict between s and t exists.

It is routine to verify that =α is an equivalence relation on the set of raw
meta-terms.

Definition 3.17. The set of raw meta-terms is the set of equivalence classes
over the set of raw pre-meta-terms with respect to =α.

The set of raw terms is the largest subset of the set of raw meta-terms con-
taining only equivalence classes having a representative without meta-variables.

It is straightforward to see that if [S] is a raw meta-term and s, t ∈ [S] are
representatives of [S], then s contains a meta-variable iff t contains one. The
definition of raw term is thus robust.

We need to ensure that the two different ways of constructing infinite meta-
terms yield identical behaviour with respect to the metric d. This is the contents
of the following theorem:

Theorem 3.18. Let [S] and [T ] be distinct raw meta-terms and let s, s′ ∈ [S]
and t, t′ ∈ [T ], then d(s, t) = d(s′, t′).

Proof. By symmetry, it suffices to prove that d(s, t) = d(s, t′). As t, t′ ∈ [T ], we
have Pos(t) = Pos(t′). Moreover, as [S] and [T ] are distinct, a conflict occurs
between s and t at some position p. Without loss of generality we may assume
that p is a position of minimal depth with this property.

We proceed by induction on p:

• If p = ε, then there is clearly a conflict between s and t′ at position ε,
otherwise t and t′ would not be α-equivalent.

• If p = i · q for i ≥ 1, then root(s) = root(t) = root(t′). By the induction
hypothesis, we have d(s|i, t|i) = d(s|i, t

′|i) = 2−|q|, and the result follows.

• If p = 0·q, then s =α [x]s̃, t =α [x]t̃, and t′ =α [x]t̃′ for suitable meta-terms
s̃, t̃, and t̃′ and a variable x. The induction hypothesis yields d(s̃, t̃) =
d(s̃, t̃′) = 2−|q|, and the result follows.

The above theorem ensures that d induces a well-defined metric on the set
raw meta-terms and we could have chosen the set as an alternative for the
set of meta-terms (in practice always working with some representative of each
equivalence class). Thus, both ‘natural’ ways of defining infinite terms mod-
ulo α-equivalence yield, for all purposes, sets of infinite terms with identical
behaviour. We find the definition of infinite terms introduced in the previous
subsection the more natural one to work with.
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3.3 Substitutions

We next define substitutions. The required definitions are the same as in the case
of CRSs [24, 40], except that the interpretation of the definition is coinductive
(due to the presence of infinite terms and meta-terms), rather than inductive.
This is identical to what is done in the case of iTRSs and iλc in relation to
the finite systems on which those systems are based. Below, we use ~x and ~t as
short-hands for, respectively, the sequences x1, . . . , xn and t1, . . . , tn with n ≥ 0.
Moreover, we assume n fixed in the next two definitions.

Definition 3.19. A substitution of the terms ~t for distinct variables ~x in a term
s, denoted s[~x := ~t], is defined as:

1. xi[~x := ~t] = ti,

2. y[~x := ~t] = y, if y does not occur in ~x,

3. ([y]s′)[~x := ~t] = [y](s′[~x := ~t]),

4. f(s1, . . . , sm)[~x := ~t] = f(s1[~x := ~t], . . . , sm[~x := ~t]).

The above definition implicitly takes into account the usual variable con-
vention [4] in the third clause to avoid the binding of free variables by the
abstraction. We now define substitutes (adopting this name from Kahrs [15]).

Definition 3.20. An n-ary substitute is a mapping denoted λx1, . . . , xn.s or
λ~x.s, with s a term, such that:

(λ~x.s)(t1, . . . , tn) = s[~x := ~t] . (1)

Reading Equation (1) from left to right yields a rewrite rule:

(λ~x.s)(t1, . . . , tn) → s[~x := ~t] .

The rule can be seen as a parallel β-rule. That is, a variant of the β-rule from
iλc which simultaneously substitutes multiple variables. We call the root of
(λ~x.s) the λ-abstraction and the root of the left-hand side of the parallel β-rule
the λ-application.

Definition 3.21. Let σ be a function that maps meta-variables to substitutes
such that, for all n ∈ N, if Z has arity n, then so does σ(Z).

A valuation induced by σ is a map σ̄ from meta-terms to terms that has the
following properties:

1. σ̄(x) = x,

2. σ̄([x]s) = [x](σ̄(s)),

3. σ̄(Z(s1, . . . , sm)) = σ(Z)(σ̄(s1), . . . , σ̄(sm)),

4. σ̄(f(s1, . . . , sm)) = f(σ̄(s1), . . . , σ̄(sm)).
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Similar to Definition 3.19, the above definition implicitly takes into account
the variable convention in the second clause to avoid the binding of free variables
by the abstraction.

From an operational point-of-view the definition of a valuation yields a
straightforward two-step way of applying it to a meta-term: In the first step
each subterm of the form Z(t1, . . . , tn) is replaced by a subterm of the form
(λ~x.s)(t1, . . . , tn). In the second step Equation (1) is applied to each subterm
of the form (λ~x.s)(t1, . . . , tn) as introduced in the first step.

In view of the rewrite rule introduced immediately below Definition 3.20 the
second step can be seen as a complete development of the parallel β-redexes
introduced in the first step. This is obviously a complete development in a
variant of iλc. The only rule of the variant is the parallel β-rule and the signature
of the variant contains, besides the λ-application and the λ-abstraction, the
abstractions, the meta-variables, and the elements of Σ of the considered iCRS.

In the finite case [22, Remark II.1.10.1], the application of a valuation to a
meta-term yields a unique term, i.e. valuations are always well-defined. Unfor-
tunately, this is no longer the case when infinite meta-terms are considered:

Example 3.22. Consider the meta-term

Z(Z(. . . Z(. . .))) .

Applying the valuation induced by any map that satisfies Z 7→ λx.x yields:

(λx.x)((λx.x)(. . . (λx.x)(. . .)))

This ‘λ-term’ has no complete development, as no matter how many parallel
β-redexes are contracted, it reduces only to itself and not to a term.

The previous problem does not depend one unique meta-variable being
present in the meta-term. The same behaviour can occur with different meta-
variables of different arities if we can define a valuation that assigns λ~x.y to
each meta-variable Z in the meta-term with y in ~x such that y corresponds to
an argument of Z which is a meta-variable.

In the above example, Z(Z(. . . Z(. . .))) is not in the domain of σ̄ due to the
fact that no function can have the properties needed to be a valuation induced
by σ and be defined on Z(Z(. . . Z(. . .))).

The problem is even more intricate: The action of applying a valuation by
reducing in the corresponding ‘λ-term’ is not necessarily confluent.

Example 3.23. Consider a signature with nullary functions symbols a and b.
Moreover, consider the meta-term

Z(a, Z(b, Z(a, Z(b, Z(. . .))))) .

Applying the valuation that assigns to Z the substitute λxy.y yields the ‘λ-
term’:

(λxy.y)(a, (λxy.y)(b, (λxy.y)(a, (λxy.y)(b, (λxy.y)(. . .))))) ,
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(λxy.y)

a (λxy.y)

b (λxy.y)

a (λxy.y)

b ...

Figure 1:

(λxy.y)

a (λxy.y)

a (λxy.y)

a (λxy.y)

a ...

Figure 2:

(λxy.y)

b (λxy.y)

b (λxy.y)

b (λxy.y)

b ...

Figure 3:

which is depicted in Figure 1. The term reduces by means of two different
developments to the ‘λ-terms’:

(λxy.y)(a, (λxy.y)(a, (λxy.y)(a, (λxy.y)(a, (λxy.y)(. . .))))) ,

as depicted in Figure 2, and:

(λxy.y)(b, (λxy.y)(b, (λxy.y)(b, (λxy.y)(b, (λxy.y)(. . .))))) ,

as depicted in Figure 3. These last two ‘λ-terms’ have no common reduct with
respect to parallel β-reduction. They reduce only to themselves. Note that this
problem also occurs in iλc [16, Section 4].

The situation is thus unsatisfactory: We would like valuations to be defined
on as many meta-terms as possible. By the above examples, this is not possible
in general. We thus need to identify a class of meta-terms that avoids these
problems, yet is sufficiently expressive.

3.4 Finite Chains Property

The examples exhibiting problems with valuations all share a common feature:
They involve meta-terms with infinite chains of meta-variables. Formally:

Definition 3.24. Let s be a meta-term. A chain of meta-variables in s is a
chain (Ci[�], pi)i<α in s, with α ≤ ω, such that for each i < α it holds that
Ci[�] = Z(t1, . . . , tm) with tj = � for exactly one 1 ≤ j ≤ m.

The meta-term s is said to satisfy the finite chains property if no infinite
chain of meta-variables occurs in s.

Example 3.25. An example of a class of meta-terms satisfying the finite chains
property is the class of finite meta-terms. The class of meta-terms with infinitely
nested chains of finite chains of meta-variables ‘guarded’ by abstractions or
function symbols also satisfies the finite chains property. The following meta-
term is an example of a meta-term in the latter class:

[x1]Z1([x2]Z2(. . . [xn]Zn(. . .)))
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As a special case we have that any meta-term in which all meta-variables occur
as Z(s1, . . . , sn) with no meta-variables occurring at the roots of s1, . . . , sm

satisfies the finite chains property.
Examples of meta-terms that do not satisfy the finite chains property are

Z(Z(. . . Z(. . .))) and Z1(Z2(. . . Zn(. . .))).

For later use, we have the following for meta-terms satisfying the finite chains
property.

Proposition 3.26. Let s be a meta-term satisfying the finite chains property
and let γ be a map that assigns to each p ∈ Pos(s) the number of prefix positions
of p at which no meta-variable occurs. For any n ∈ N, the number of positions
p with γ(p) = n is finite.

Proof. Consider s as a finitely-branching tree. Remove from this tree all po-
sitions p for which γ(p) > n. As any suffix p′ of such a p must also satisfy
γ(p′) > n, the graph resulting from this removal is again a tree, denote it by T .

Assume that T contains an infinite path, such that for every position p along
the path γ(p) ≤ n. Since non-meta-variables can only occur at n positions along
the path, there exists a position q such that only meta-variables occur at suffixes
of q, contradicting the finite chains property. Hence, no infinite path occurs in
T . As T is finitely branching, König’s Lemma yields that T is finite, implying
that the number of positions p for which γ(p) ≤ n, and a fortiori γ(p) = n is
also finite.

We next show that all valuations are total on the set of meta-terms satisfying
the finite chains property.

Proposition 3.27. Let s be a meta-term satisfying the finite chains property
and let σ̄ a valuation. There exists a unique term that is the result of applying
σ̄ to s.

Proof. Viewing the application of σ̄ in the two-step operational way described
in the previous section, it is immediate by the definition of valuations that the
first step of applying σ̄ to s has a unique result. Denote this result by sσ and
denote the set containing all parallel β-redexes in sσ by U . The result now
follows if we can show that U has a complete development ending in a term
and, moreover, that each development of U ends in the same term.

Although omitted, the definitions of (complete) developments can be easily
derived from the definitions for iλc or those presented in Section 6.

To start, observe that to repeatedly rewrite the root of sσ by means of the
parallel β-redex requires the root to be of the form

(λ~x.xi)(t1, . . . , tn) ,

where 1 ≤ i ≤ n and ti is again such a redex. This is only possible if there
exists in sσ an infinite chain of such redexes starting at the root. However,
this means that an infinite chain of meta-variables must occur in s, which is
impossible as s satisfies the finite chains condition. Thus, the root can only
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be rewritten finitely often in a development. Applying the same reasoning to
the roots of the subterms, we obtain a complete development reducing the re-
dexes of U in an outside-in fashion. Since all parallel β-redexes occur in U and
since no λ-applications and λ-abstractions occur in s, the result of the complete
development, which we denote σ̄(s), is necessarily a term.

To show that each complete development ends in σ̄(s), observe that we can
consider each parallel β-redex (λx1, . . . , xn.s)(t1, . . . , tn) to be a sequence of
β-redexes:

(λx1.(. . . ((λxn.s)tn) . . .))t1 .

This means that each complete development in our variant of iλc corresponds to
a complete development in iλc extended with some function symbols. As each
complete development in iλc ends in the same term [16, 17], a result independent
of any added function symbols, the same holds for the redexes in U . Hence, σ̄(s)
is unique.

Remark 3.28. The subset of meta-terms satisfying the finite chains property
can alternatively be defined by slightly altering the depth measure and metric
employed to define infinite meta-terms.

Given a term s and a position p ∈ Pos(s), define the depth measure D:

D(s, ε) = 0

D(Z(t1, . . . , tn), i · p′) = D(ti, p
′)

D([x]t, 0 · p′) = 1 +D(t, p′)

D(f(t1, . . . , tn), i · p′) = 1 +D(ti, p
′)

The difference with the usual depth measure |p| is to be found in the fact that
we are not counting meta-variables towards the depth.

Next define the metric da:

da(s, t) =

{

0 if s and t are α-equivalent

2−k otherwise

where k is the minimal depth — with respect to the depth measure D — such
that a conflict occurs between s and t.

The meta-terms without infinite chains of meta-variables are now defined
by taking the metric completion of the set of finite meta-terms with respect
to da. The conclusion that precisely the meta-terms without infinite chains of
meta-variables are obtained is an immediate consequence of the meta-variables
not counting towards the depth.

The above construction for the subset of meta-terms satisfying the finite
chains property is inspired by similar constructions for iλc defining subsets of
the set of infinite λ-terms by slightly altering the notion of the depth measure
used in the employed metric [16]. The set containing no λ-terms with infinite
chains of λ-abstractions (i.e. subterms of the form λx1.λx2 . . . λxn . . .) can e.g.
be defined in this way.
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4 Rewrite Rules and Reductions

Having defined terms, we move on to define the rewrite relation and reductions
of terms.

4.1 Rewrite Rules

We give a number of definitions that are direct extensions of the corresponding
definitions from CRS theory.

Definition 4.1. A finite meta-term is a pattern if each of its meta-variables
has distinct bound variables as its arguments. Moreover, a meta-term is closed
if all its variables occur bound.

We next define rewrite rules and iCRSs. As in the case of iTRSs, the defi-
nitions are identical to the definitions in the finite case, with exception of the
restrictions on the right-hand sides of the rewrite rules [9, 18]. In the case of
iTRSs the finiteness restriction is lifted from the right-hand sides. Here, this is
also done, but at the same time the finite chains property is put in place.

Definition 4.2. A rewrite rule is a pair (l, r), denoted l → r, where l is a finite
meta-term and r is a meta-term, such that:

1. l is a pattern and of the form f(s1, . . . , sn) with f ∈ Σ of arity n,

2. all meta-variables that occur in r also occur in l,

3. l and r are closed, and

4. r satisfies the finite chains property.

The meta-terms l and r are called, respectively, the left-hand side and the right-
hand side of the rewrite rule.

An infinitary Combinatory Reduction System (iCRS) is a pair C = (Σ, R)
with Σ a signature and R a set of rewrite rules.

With respect to the left-hand sides of rewrite rules, it is always the case that
only finite chains of meta-variables occur, since the left-hand sides are finite.
Moreover, it follows easily that iTRSs and iλc are iCRSs if we interpret their
rewrite rules as rules in the above sense. By definition of iTRSs and iλc we
have that only finite chains of meta-variables occur in the right-hand sides of
the rewrite rules.

We now define rewrite steps.

Definition 4.3. A rewrite step is a pair of terms (s, t), denoted s → t, such
that s = C[σ̄(l)] and t = C[σ̄(r)] for some one-hole context C[�], rewrite rule
l → r, and valuation σ̄. The term σ̄(l) is called an l → r-redex, or simply a
redex. The redex occurs at position p and depth |p| in s, where p is the position
of hole in C[�].
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Any position q of s is said to occur in the redex pattern of the redex at
position p if q ≥ p and if there does not exist a position q′ with q ≥ p · q′ such
that q′ is the position of a meta-variable in l.

We now mention some standard restrictions on rewrite rules that we shall
need later in the paper:

Definition 4.4. A rewrite rule is left-linear, if each meta-variable occurs at
most once in its left-hand side. Moreover, an iCRS is left-linear if all its rewrite
rules are.

Definition 4.5. A pattern is fully-extended [14, 37], if, for each of its meta-
variables Z and each abstraction [x]s having an occurrence of Z in its scope, x is
an argument of that occurrence of Z. Moreover, a rewrite rule is fully-extended
if its left-hand side is and an iCRS is fully-extended if all its rewrite rules are.

Definition 4.6. Let s and t be finite meta-terms that have no meta-variables
in common. The meta-term s overlaps t if there exists a non-meta-variable
position p ∈ Pos(s) and a valuation σ̄ such that σ̄(s|p) = σ̄(t).

Two rewrite rules overlap if their left-hand sides overlap and if the overlap
does not occur at the root when two copies of the same rule are considered. An
iCRS is orthogonal if all its rewrite rules are left-linear and no pair of rewrite
rules overlaps.

Remark 4.7. It is easily seen that if two left-linear rules overlap in an infinite
term, there is also a finite term in which they overlap. As left-hand sides are
finite meta-terms, we may appeal to standard ways of deeming CRSs orthogonal
by inspection of their rules. We shall do so informally on several occasions in
the remainder of the paper.

Definition 4.8. A rewrite rule is collapsing if its right-hand side has a meta-
variable at the root. Moreover, a redex and a rewrite step are collapsing if the
employed rewrite rule is. A redex is called root-collapsing if it is collapsing and
occurs at position ε.

4.2 Transfinite Reductions

We can now define transfinite reductions. The definition is equivalent to those
for iTRSs and iλc [18, 16].

Definition 4.9. A transfinite reduction with domain α > 0 is a sequence of
terms (sβ)β<α such that sβ → sβ+1 for all β + 1 < α. In case α = α′ + 1, the
reduction is closed and of length α′. In case α is a limit ordinal, the reduction
is called open and of length α. The reduction is weakly continuous or Cauchy
continuous if, for limit every ordinal γ < α, the distance between sβ and sγ

tends to 0 as β approaches γ from below. The reduction is weakly convergent
or Cauchy convergent if it is weakly continuous and closed.
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Intuitively, an open transfinite reduction is lacking a well-defined final term,
while a closed reduction does have such a term.

As in [18, 16, 17], we prefer to reason about strongly convergent reductions.
This ensures that we can restrict our attention to reductions of length at most
ω by the so-called compression property, as shown in Section 5.

Definition 4.10. Let (sβ)β<α be a transfinite reduction. For each rewrite step
sβ → sβ+1, let dβ denote the depth of the contracted redex. The reduction
is strongly continuous if it is weakly continuous and if, for every limit ordinal
γ < α, the depth dβ tends to infinity as β approaches γ from below. The
reduction is strongly convergent if strongly continuous and closed.

Notation 4.11. By s �
α t, respectively s �

≤α t, we denote a strongly convergent
reduction of ordinal length α, respectively of ordinal length less than or equal
to α. By s � t we denote a strongly convergent reduction of arbitrary ordinal
length and by s →∗ t we denote a reduction of finite length. Reductions are
usually ranged over by capitals such as D, S, and T . The concatenation of
reductions S and T is denoted by S;T .

Note that the concatenation of any finite number of strongly convergent re-
ductions is a strongly convergent reduction. With respect to strongly convergent
reductions we also have the following:

Lemma 4.12. If s � t, then the number of steps contracting redexes at depths
less than d ∈ N is finite for any d.

Proof. This is exactly the proof of [18, Lemma 3.5].

Corollary 4.13. Every strongly convergent reduction has countable length.

4.3 Descendants and Residuals

The definition of a descendant across a rewrite step σ̄(l) → σ̄(r) follows the
definition of substitution, and is thus defined in two steps. The first step defines
descendants in σ̄(r) where only the valuation is applied and not Equation (1).
The second step defines descendants across application of Equation (1).

Given that the second step of the substitution is just a complete development
in a variant of iλc, the second step in the definition of descendants is just a
variant of descendants in iλc [16, 17]. For this reason, the second step is not
made explicit here. However, it should be remarked that we use a variant of
descendants in iλc in which positions of variables bound by parallel β-redexes
that are being reduced do not have any descendants, while the behaviour with
respect to all other positions is a usual. As a consequence of this assumption,
positions of variables bound by redexes being reduced in iCRSs will not have
descendants either. This behaviour is analogous to that of descendants defined
in [22].

We next give a definition for the first step. In the definition we denote
by 0 the position of the subterm on the left-hand side of a λ-application and
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also the position of the body of a λ-abstraction. By 1, . . . , n we denote the
positions of the subterms on the right-hand side of the λ-application. This
means that (λ~x.s)(t1, . . . , tn)|0 = (λ~x.s), λ~x.s|0 = s, and Z(t1, . . . , tn)|i =
(λ~x.s)(t1, . . . , tn)|i = ti for 1 ≤ i ≤ n. We denote by σ̄(l) → rσ the rewrite
step σ̄(l) → σ̄(r) where the valuation is applied to r but not Equation (1).

Definition 4.14. Let l → r be a rewrite rule, σ̄ a valuation, and p ∈ Pos(σ̄(l)).
Suppose u : σ̄(l) → rσ. The set p/

1
u is defined as follows:

• if a position q ∈ Pos(l) exists such that p = q · q′ and root(l|q) = Z, then
define p/

1
u = {p′ · 0 · 0 · q′ | p′ ∈ P} with P = {p′ | root(r|p′) = Z},

• if no such position exists, then define p/
1
u = ∅.

Note that Pos(r) ⊆ Pos(rσ) by the notation of positions in subterms of the
form (λ~x.s)(t1, . . . , tn). From this it follows that P ⊆ Pos(rσ).

We can now give the full definition of a descendant across a rewrite step.

Definition 4.15. Let u : C[σ̄(l)] → C[σ̄(r)] be a rewrite step, such that p is the
position of the hole in C[�], and let q ∈ Pos(C[σ̄(l)]). The set of descendants
of q across u, denoted q/u, is defined as q/u = {q} in case p ‖ q or p < q. In
case q = p · q′, it is defined as q/u = {p · q′′ | p′′ ∈ Q}, where Q is the set of
descendants of q′/

1
u′ with u′ : σ̄(l) → rσ across a complete development of the

parallel β-redexes in rσ.

Descendants across a reduction are defined as for iTRSs and iλc.

Definition 4.16. Let s0 �
α sα and let P ⊆ Pos(s0). The set of descendants

of P across s0 �
α sα, denoted P/(s0 �

α sα), is defined as follows:

• if α = 0, then P/(s0 �
α sα) = P ,

• if α = 1, then P/(s0 → s1) =
⋃

p∈P p/(s0 → s1),

• if α = β + 1, then P/(s0 �
β+1 sβ+1) = (P/(s0 �

β sβ))/(sβ → sβ+1),

• if α is a limit ordinal, then p ∈ P/(s0 �
α sα) iff p ∈ P/(s0 �

β sβ) for all
large enough β < α.

In the case of orthogonal iCRSs, if there exists a redex at a position p
employing a rewrite rule l → r that is not contracted in a rewrite step and if p
has descendants across the step, then there exists a redex at each descendant of
p that also employs the rule l → r. Hence, for orthogonal systems there exists a
well-defined notion of residual by strongly convergent reductions. We overload
the notation ·/· to denote both the descendant and the residual relation.

Notation 4.17. Let s � t. Assume P ⊆ Pos(s) and U a set of redexes in s.
We denote the descendants of P across s � t by P/(s � t) and the residuals
of U across s � t by U/(s � t). Moreover, if P = {p} and U = {u}, then we
also write p/(s � t) and u/(s � t). Finally, if s � t consists of a single step
contracting a redex u, then we sometimes write U/u.
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σ0(l)
≤ω
σω(l)

σ0(r)
≤ω
σω(r)

Figure 4: Lemma 5.1

The following two lemmas provide some insight in the interplay between
residuals and strongly convergent reductions, they are the respective analogues
of Lemmas 12.5.12 and 12.5.4 in [17].

Lemma 4.18. Let U be a set of positions in a term s and let s � t. If every
step in s � t occurs strictly below depth d, then U and U/(s � t) have exactly
the same members at depth at most d.

Proof. No reduction can affect any part of the term at lesser depths than its
steps.

Lemma 4.19. For every fully-extended, left-linear iCRS, if s � t is a reduction
of limit ordinal length, then for every redex u in t there exists a term s′ in s � t
such that u is the unique residual of a redex in s′.

Proof. Suppose that u is a redex in t that occurs at position p. By definition
of rewrite rules, it follows that the left-hand side of the rewrite rule employed
in u is finite. Hence, there exists a depth d such that all positions in the redex
pattern of u have depth strictly less than d. By strong convergence we may
write s � t as s � s′ � t such that all steps in s′ � t occur below depth d.
By left-linearity and fully-extendedness it now follows that a redex v occurs at
position p in s′ with u the unique residual of v.

5 Compression

Compression is a feature of (strongly convergent) infinitary rewriting that, in
essence, allows us to ‘compress’ reductions of arbitrary lengths to much more
manageable ‘equivalent’ reductions of length at most ω.

In this section, we prove the compression property for fully-extended, left-
linear iCRSs. Fully-extendedness and left-linearity ensure that no redex is cre-
ated by either making two subterms equal in an infinite number of steps or by
erasing some variable in an infinite number of steps. We will show later in the
section that these two assumptions cannot be omitted.

We first prove an auxiliary lemma:

Lemma 5.1. For every fully-extended, left-linear iCRS, if σ0(l) �
≤ω σω(l) →

σω(r), then σ0(l) → σ0(r) �
≤ω σω(r) (see Figure 4).
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Proof. Let σ0(l) �
≤ω σω(l) → σω(r). By left-linearity and fully-extendedness

we have that σ0(l) → σ0(r). Hence, σ0(r) �
≤ω σω(r) is left to prove.

Since the left-hand side of each rewrite rule is a pattern, it follows that
σ0(l) � σω(l) consists of a finite number of interleaved, strongly convergent
reductions of length at most ω: one reduction for each meta-variable Z that
occurs in l reducing σ0(Z)(~x) to σω(Z)(~x). By Lemma 4.12 we may write:

σ0(Z)(~x) →∗ σ1(Z)(~x) →∗ · · · →∗ σd(Z)(~x) →∗ σd+1(Z)(~x) →∗ · · · σω(Z)(~x) ,

where for each d ≥ 0 we have that all steps in σd(Z)(~x) � σω(Z)(~x) occur at
depth d or below. Hence, σd(Z)(~x) � σω(Z)(~x) is possibly empty. Moreover,
by left-linearity, we may replace the variables ~x by arbitrary terms ~t to obtain
a reduction σd(Z)(~t) →∗ σd+1(Z)(~t). No nesting of the terms in ~t can occur, as
the free variables in ~t are also free in σd(Z)(~t).

We now show for all d ≥ 0 that there exists a reduction sd →∗ sd+1 with all
rewrite steps occurring at depth d or below and such that d(sd, σω(r)) ≤ 2−d and
s0 = σ0(r). To do so, define a map γ that assigns to each p ∈ Pos(r) the number
of prefix positions of p at which no meta-variable occurs. By Proposition 3.26
we have for any n ∈ N that the number of positions p with γ(p) = n is finite.

Label each meta-variable in r with its position yielding a labelled meta-term
r′. Denote the labelled meta-variables in r′ by Zp and define the following for
each d ≥ 0 and Zp:

σ′
d(Z

p) =

{

σ0(Z) if d ≤ γ(p)

σd−γ(p)(Z) if d > γ(p)

sd = σ′
d(r

′)

with the final σ′
d the valuation induced by the map defined on meta-variables.

For each Zp with d > γ(p) consider σd−γ(p)(Z)(~x) →∗ σd−γ(p)+1(Z)(~x).
As the number of meta-variable positions with d > γ(p) is finite and as no
new nestings can be created, it follows that sd →∗ sd+1. Since all steps in
σd−γ(p)(Z)(~x) →∗ σd−γ(p)+1(Z)(~x) for Z at position p in r occur at depth
d − γ(p) or below and since there are γ(p) prefix positions of p at which no
meta-variable occurs, all rewrite steps in sd →∗ sd+1 occur at depth d or below.
Moreover, since all rewrite steps in σd−γ(p)(Z)(~x) � σω(Z)(~x) also occur at

depth d− γ(p) or below, we also have d(sd, σω(r)) ≤ 2−d.
By construction of sd →∗ sd+1 it follows that

s0 →∗ s1 →∗ · · · →∗ sd →∗ sd+1 →∗ · · · σω(r)

is a strongly convergent reduction of length at most ω. Moreover, as σ0(r) = s0,
we have σ0(r) �

≤ω σω(r). Hence, the result now follows.

The main result of the section is now as follows:

Theorem 5.2 (Compression). For every fully-extended, left-linear iCRS, if
s �

α t, then s �
≤ω t.
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Proof. Let s �
α t and proceed by ordinal induction on α. By [17, Theorem

12.7.1] it suffices to show that the theorem holds for α = ω+1: The cases where
α is 0, a limit ordinal, or a successor ordinal greater than ω + 1 do not depend
on the definition of rewriting.

Suppose α = ω + 1 and write

s = s0 → s1 → · · · sω → sω+1 = t .

The redex contracted in sω → sω+1, call it u, occurs at a position p at depth
du in sω. By definition of rewrite rules, the rule employed in u, say l → r, has
a finite left-hand side. Hence, there exists a dl > du such that all positions in
the redex pattern of u have depth strictly less than dl.

By Lemma 4.12, we may write s � t as:

s0 →∗ sn � sω → sω+1

where all rewrite steps in sn � sω occur at depth dl or below. Moreover, by
left-linearity and fully-extendedness it follows that a redex v occurs at position
p in sn with u the unique residual of v. Contracting v in sn yields a term t′.

Observe for some m ∈ N there exists a context C[�, . . . ,�] with m+1 holes,
which all occur at depth du, such that we may write sn � sω → sω+1 as:

C[σ(l), s′1, . . . , s
′
m] � C[σ′(l), s′′1 , . . . , s

′′
m] → C[σ′(r), s′′1 , . . . , s

′′
m] .

Existence follows as each rewrite step in sn � sω occurs at depth dl > du or
below and as all positions in the redex pattern of redex v occur at or at depth
du or below.

By definition of C[�, . . . ,�] we have that t′ = C[σ(r), s′1, . . . , s
′
m], where t′ is

the result of contracting v in sn. Moreover, the reduction sn � sω+1 interleaves
the reductions σ(l) �

≤ω σ′(l) → σ′(r) and s′i �
≤ω s′′i , with 1 ≤ i ≤ m, where

for the first of these reductions, there exists a reduction σ(l) → σ(r) �
≤ω σ′(r)

by Lemma 5.1.
By Lemma 4.12, we may write σ(r) �

≤ω σ′(r) as:

σ(r) = σ0(r) →∗ σ1(r) →∗ · · · →∗ σd(r) →∗ σd+1(r) →∗ · · · σ′(r)

and each s′i �
≤ω s′′i as:

s′i = s0i →∗ s1i →∗ · · · →∗ sd
i →∗ sd+1

i →∗ · · · s′′i ,

where for each d ≥ 0 we have that steps in σd(r) � σ′(r) and sd
i � s′′i occur at

depth d or below. Hence, σd(r) � σ′(r) and sd
i � s′′i may be empty from some

d onwards.
We now show for all d ≥ 0 that there exists a reduction td →∗ td+1 with

all rewrite steps occurring at depth du + d or below and such that d(td, t) ≤
2−(du+d). To do so, define the following for each d ≥ 0:

td = C[σd(r), sd
1, . . . , s

d
m]
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and consider σd(r) →∗ σd+1(r) and sd
i →∗ sd+1

i for all 1 ≤ i ≤ m. Obviously,
we have:

td = C[σd(r), sd
1, . . . , s

d
m] →∗ C[σd+1(r), sd+1

1 , . . . , sd+1
m ] = td+1 .

Since all steps in σd(r) →∗ σd+1(r) and sd
i →∗ sd+1

i occur at depth d or below
and since the holes in the context C[�, . . . ,�] occur at depth du, all rewrite
steps in td → td+1 occur at depth du + d or below. Moreover, since all rewrite
steps in σd(r) � σ′(r) and sd

i � s′′i also occur at depth d or below, we also have
that d(td, t) ≤ 2−(du+d).

By construction of the reductions td →∗ td+1 it follows that

t0 →∗ t1 →∗ · · · →∗ td →∗ td+1 →∗ · · · t

is a strongly convergent reduction of length at most ω. Since t′ = t0, we have
that t′ �

≤ω t. Hence, as s→∗ t′, it follows that s �
≤ω t, as required.

The previous proof is completely independent of the particulars of the notion
of rewriting involved, as long as it is based on terms and contexts. Indeed,
the proof is essentially a spelled out and detailed version of earlier proofs of
compression properties in more restricted settings, e.g. iλc [16]. The details
specific to iCRSs are restricted to Lemma 5.1.

We next show that the assumptions of left-linearity and fully-extendedness
cannot be omitted from the previous theorem. In addition we show that omitting
the finite chains property from the definition of a rewrite rule can also make
compression fail.

Example 5.3 (Failure of compression without left-linearity). In case left-linearity
is omitted, failure of compression follows if we interpret the counterexample to
compression for non-left-linear iTRSs [18] in the context of iCRSs. That is,
suppose we have at our disposal the following three rewrite rules:

f(Z,Z) → c

a→ g(a)

b→ g(b)

Obviously, the first of the above rules is not left-linear. Now consider the fol-
lowing reduction of length ω + 1:

f(a, b) →∗ f(g(a), g(b)) →∗ f(g2(a), g2(b)) →∗ · · · f(gω, gω) → c

The reduction cannot the compressed to a reduction of length at most ω, because
ω steps are required to reduce both g(a) and g(b) to gω and because the two
arguments of f differ as long as g(a) and g(b) have not been reduced to gω.

Example 5.4 (Failure of compression without fully-extendedness). Consider the
following two rewrite rules:

f([x]Z) → Z

g(Z) → h(g(Z))
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The first of the above two rewrite rules is not fully-extended, as the meta-
variable Z on the left-hand side occurs in the scope of the abstraction [x], while
x is not an argument of Z. Now consider the following reduction:

f([x]g(x)) → f([x]h(g(x))) → · · · f([x]hω) → hω

The reduction cannot be compressed to a reduction of length at most ω, because
ω steps are required to reduce g(x) to hω and because the variable x occurs
bound as long as g(x) has not been reduced to hω.

Alternative to the above, failure of compression in the case of non-fully-
extendedness also follows by interpreting the λβη-calculus in the context of
iCRSs. The η-rule is not fully-extended. That compression to reductions of at
most length ω fails is demonstrated in [16]. However, as shown in [33] a slightly
different compression property does hold in the case of the λβη-calculus: Each
reduction can be compressed to a reduction of length at most ω + ω.

Lastly, we show that the finite chains property that underlies much of treat-
ment of iCRSs is also needed for compression:

Example 5.5 (Failure of compression without the finite chains property). As-
sume we have at our disposal the the following two rewrite rules:

f([x]Z(x), [y]Z ′(y)) → Z ′(Zω)

g(Z) → h(g(Z))

Obviously, the right-hand side of the first rule does not satisfy the finite chains
property. Now consider the following reduction:

f([x]x, [y]g(y)) → f([x]x, [y]h(g(y))) → · · · f([x]x, [y]hω) → hω

Compression fails, as the first rule cannot be applied to f([x]x, [y]g(y)), or for
that matter to any f([x]x, [y]hn(g(y))) with n ∈ N, because we have:

f([x]x, [y]hn(g(y))) = σ̄(f([x]Z(x), [y]Z ′(y))) ,

with σ(Z) = λx.x and σ(Z ′) = λy.hn(g(y)), and:

σ̄(Z ′(Zω)) = (λy.hn(g(y)))((λx.x)((λx.x)(. . . ((λx.x)(. . .))))) ,

which obviously has no complete development of its parallel β-redexes.

6 Developments

In this section we prove that each complete development of the same set of
redexes in an orthogonal iCRS ends in the same term.

Assuming in the remainder of this section that every iCRS is orthogonal and
that s is a term and U a set of redexes in s, we first define developments:
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Figure 5: A path tracing trough a term: when a redex or a bound variable is
met in a trace, a ‘jump’ is made to the right-hand side of the employed rewrite
rule and the trace continues there until a meta-variable is encountered.

Definition 6.1. A development of U is a strongly convergent reduction such
that each step contracts a residual of a redex in U . A development s � t is
called complete if U/(s � t) = ∅. Moreover, a development is called finite if
s � t is finite.

Remark 6.2. Although the above the definition and the results below concern
orthogonal iCRSs, they can actually be interpreted in the more liberal context
of orthogonal sets of redexes, i.e. where no restrictions are placed upon the
iCRSs but where it is assumed that there is no overlap between the redexes
that occur in U . No modification of either the above definition or the proofs
below is necessary. Even though this is the case, we opt to work in the context of
orthogonal iCRSs, as this is most common throughout the literature on rewrite
systems.

6.1 Paths and Finite Jumps

To prove that each complete development of the same set of redexes ends in
the same term, we extend the technique of the Finite Jumps Developments
Theorem [17] to orthogonal iCRSs. The theorem employs the notions of paths
and path projections. In essence, paths and path projections ‘trace’ through
terms starting at the root and proceeding to increasingly greater depths. Most
importantly, if a redex to be contracted in a development or a variable bound
by such a redex is met in a trace, a ‘jump’ is made to the right-hand side of the
employed rewrite rule. The trace continues there until a meta-variable is met,
at which point a jump back to the original term is made (see Figure 5).

In the following, we denote by pu the position of the redex u in s. Moreover,
we say that a variable x is bound by a redex u if x is bound by an abstraction
[x] which occurs in the left-hand side of the rewrite rule employed in u.
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Definition 6.3. A path of s with respect to U is a sequence of nodes and edges.
Each node is labelled either (s, p) with p ∈ Pos(s) or (r, p, pu) with r the right-
hand side of a rewrite rule, p ∈ Pos(r), and u ∈ U . Each directed edge is either
unlabelled or labelled with an element of N.

Every path starts with a node labelled (s, ε). If a node n of a path is labelled
(s, p) and has an outgoing edge to a node n′, then:

1. if the subterm at p is not a redex in U , then for some i ∈ Pos(s|p)∩N the
node n′ is labelled (s, p · i) and the edge from n to n′ is labelled i,

2. if the subterm at p is a redex u ∈ U with l → r the employed rewrite
rule, then the node n′ is labelled (r, ε, pu) and the edge from n to n′ is
unlabelled,

3. if s|p is a variable x bound by a redex u ∈ U with l → r the employed
rewrite rule, then the node n′ is labelled (r, p′ · i, pu) and the edge from
n to n′ is unlabelled, such that (r, p′, pu) was the last node before n with
pu, root(r|p′) = Z, the unique position of Z in l is q, and l|q·i = x.

If a node n of a path is labelled (r, p, pu) and has an outgoing edge to a node
n′, then:

1. if root(r|p) is not a meta-variable, then for some i ∈ Pos(r|p)∩N the node
n′ is labelled (r, p · i, pu) and the edge from n to n′ is labelled i,

2. if root(r|p) is a meta-variable Z, then the node n′ is labelled (s, pu · q) and
the edge from n to n′ is unlabelled, such that l → r is the rewrite rule
employed in u and such that q is the unique position of Z in l.

We say that a path is maximal if it is not a proper prefix of another path.
We write a path Π as a (possibly infinite) sequence of alternating nodes and
edges Π = n1e1n2 . . ..

Definition 6.4. Let Π = n1e1n2 . . . be a path of s with respect to U . The
path projection of Π is a sequence of alternating nodes and edges φ(Π) =
φ(n1)φ(e1)φ(n2) . . . such that for each node n of Π:

1. if n is labelled (s, p), then φ(n) is unlabelled if s|p is a redex in U or a
variable bound by such a redex and it is labelled root(s|p) otherwise,

2. if n is labelled (r, p, q), then φ(n) is unlabelled if root(r|p) is a meta-
variable and it is labelled root(r|p) otherwise.

For each edge e, if e is labelled i, then φ(e) has the same label, and if e is
unlabelled, then φ(e) is labelled ε.

Example 6.5. Consider the orthogonal iCRS that only has the following rewrite
rule, also denoted l → r:

f([x]Z(x), Z ′) → Z(g(Z(Z ′))) .
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Given the terms s = f([x]g(x), a) and t = g(g(g(a))) and the set U containing
the only redex in s, we have that s→ t is a complete development of U .

The term s has one maximal path with respect to U :

(s, ε) → (r, ε, ε) → (s, 10)
1
→ (s, 101) → (r, 1, ε)

1
→ (r, 11, ε)

→ (s, 10)
1
→ (s, 101) → (r, 111, ε) → (s, 2)

Moreover, the term t has one maximal path with respect to U/(s→ t) = ∅:

(t, ε)
1
→ (t, 1)

1
→ (t, 11)

1
→ (t, 111) .

The path projections of the maximal paths are, respectively,

·
ε
→ ·

ε
→ g

1
→ ·

ε
→ g

1
→ ·

ε
→ g

1
→ ·

ε
→ ·

ε
→ a

and
g

1
→ g

1
→ g

1
→ a .

Let P(s,U) denote the set of path projections of maximal paths of s with
respect to U . The following two results can be witnessed in the above example,
their proofs are simple, but tedious and lengthy, hence occur in Appendix A.

Proposition 6.6. The map φ defines a bijection between the set of paths and
the set of path projections, respectively between maximal paths and the path
projections in P(s,U).

Lemma 6.7. Let u ∈ U and let s→ t be the rewrite step contracting u. There
exists a bijection between P(s,U) and P(t,U/u). Given a path projection φ(Π) ∈
P(s,U), its image under the bijection is acquired from φ(Π) by deleting finite
sequences of unlabelled nodes and ε-labelled edges from φ(Π).

We next define a property U , based on P(s,U): the finite jumps property.
We also define some terminology to relate a term to P(s,U).

Definition 6.8. The set U has the finite jumps property if no path projection
occurring in P(s,U) contains an infinite sequence of unlabelled nodes and ε-
labelled edges. Moreover, a term t matches P(s,U) if, for all φ(Π) ∈ P(s,U) and
all prefixes of φ(Π) ending in a node φ(n) labelled f , it holds that root(t|p) = f ,
where p is the concatenation of the edge labels in the prefix (starting at the first
node of φ(Π) and ending in φ(n)).

We now prove an ancillary result concerning finite jumps; the proof is (al-
most) identical to the proof of Proposition 12.5.8 in [17].

Proposition 6.9. If U has the finite jumps property, then there exists a unique
term, denoted T (s,U), that matches P(s,U).
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Proof. Let Pp(s,U) denote the set of all prefixes of path projections in P(s,U)
such that the concatenation of the edge labels for each prefix is p and such that
each prefix ends in a labelled node. The proof proceeds by induction on p.

Consider Pε(s,U). By the finite jumps property Pε(s,U) is non-empty and
by the definition of paths, Pε(s,U) has at most one element. Hence, Pε(s,U) is a
singleton set. By definition of paths, the unique prefix in Pε(s,U) has precisely
one labelled node. Suppose the label is f . It follows that t only matches P(s,U)
if root(t|ε) = f .

Now suppose Pp(s,U) is a singleton set such that the final node node of the
unique prefix in the set is labelled f , where f is either a variable, a function
symbol of arity n, or an abstraction. In the last two cases, consider Pp·i(s,U)
for either 1 ≤ i ≤ n or i = 0. By the finite jumps property, the definition of
paths, and the fact that Pp(s,U) is a singleton set, we have that Pp·i(s,U) is
a singleton set. Suppose that final node of the unique prefix in Pp·i(s,U) is
labelled g. It follows that t only matches P(s,U) if root(t|p·i) = g.

Since all sets Pp(s,U) are singleton sets there exist terms that match P(s,U).
Moreover, if t is such a term, then we have for all p ∈ Pos(t) that Pp(s,U) exists
and is a singleton set (look at all prefixes of p), and if the final labelled node of
the unique prefix in such a set has label f , then root(t|p) = f . Hence, the term
t is unique.

We can finally prove the Finite Jumps Developments Theorem:

Theorem 6.10 (Finite Jumps Developments Theorem). If U has the finite
jumps property, then:

1. every complete development of U ends in T (s,U),

2. for any p ∈ Pos(s), the set of descendants of p by a complete development
of U is independent of the complete development,

3. for any redex u of s, the set of residuals of u by a complete development
of U is independent of the complete development, and

4. U has a complete development.

Proof. (1) Suppose there is a complete development. We show by ordinal induc-
tion that for every sα in the complete development with residuals Uα = U/(s �

sα) of U , we have that P(sα,Uα) can be obtained from P(s,U) by deleting finite
sequences of unlabelled nodes and ε-labelled edges from the elements of P(s,U).
Obviously, for s0 = s, this is immediate.

For sα+1, it follows by the induction hypothesis that P(sα,Uα) can be ob-
tained from P(s,U) by deleting finite sequences of unlabelled nodes and ε-
labelled edges from the elements of P(s,U). Moreover, by Lemma 6.7, we
have that P(sα+1,Uα+1) can be obtained from P(sα,Uα) by deleting finite se-
quences of unlabelled nodes and ε-labelled edges. Hence, P(sα+1,Uα+1) can
also be obtained from P(s,U) by deleting finite sequences of unlabelled nodes
and ε-labelled edges.
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For sα with α a limit ordinal, we have by strong convergence that P(sα,Uα)
can be obtained from P(s,U) by deleting all unlabelled nodes and ε-labelled
edges deleted in the previous steps. As P(s,U) has the finite jumps property,
P(sα,Uα) can only be obtained by deleting finite sequences of unlabelled nodes
and ε-labelled edges.

Hence, each P(sα,Uα) has the finite jumps property, as P(s,U) has the finite
jumps property and as each P(sα,Uα) can be obtained by deleting only finite
sequences of unlabelled nodes and ε-labelled edges.

By Proposition 6.9 we have for each P(sα,Uα) that there is a unique term
T (sα,Uα) that matches it. By inspection of the proof of the proposition it
easily follows that the unlabelled nodes and ε-labelled edges are irrelevant for
the construction of T (sα,Uα). Hence, T (sα,Uα) = T (s,U) for all α. Moreover,
since the chosen complete development was arbitrary, it follows that the final
term of each complete development is T (s,U).

(2) In analogy to [22, Section II.2], let K be a set of labels including a special
empty label ε. Define for all function symbols f , variables x, and for all labels
k ∈ K the labelled alternatives fk and xk, where f and fk have the same arity. A
labelling of a (meta-)term replaces each function symbol and variable (including
the variables that occur in abstractions) by a labelled alternative, assuming
that the labels of variables are ignored where bindings and substitutions are
concerned.

The labelled version of the assumed orthogonal iCRS includes for every
rewrite rule l → r and every possible labelling l′ of l the rewrite rule l′ → r′,
where r′ is the labelling of r that labels all function symbols and variables with
ε. The labelled version of the iCRS is easily shown to be orthogonal (see [22,
Proposition II.2.6]).

Each reduction in the labelled version corresponds to a reduction in the
original iCRS by removal of all labels. Moreover, given a reduction in the original
iCRS and a labelling for the initial term, there exists a unique reduction in the
labelled version such that removal of the labels gives the reduction we started
out with.

Given a term in which some subterms are labelled k, it is easy to show
that the descendants of these subterms across some reduction are precisely the
subterms labelled k in the final term. Moreover, these descendants are exactly
the descendants obtained in the corresponding unlabelled reduction. The result
now follows by the first clause of the current proof when applied to the labelled
version of the assumed iCRS, when trivially extended to the slightly more liberal
notion of substitutions.

(3) By the second clause of the current proof and orthogonality of the as-
sumed iCRS.

(4) Consider a maximal path Π with a node (s, p) such that p is the position
of a redex in U . By definition of paths and path projections we have for the first
node n = (s, p) in Π with p the position of a redex that the concatenation of the
edge label of the prefix of φ(Π) that ends in φ(n) is p. Moreover, by inspection
of the proof of Lemma 6.7 it follows that contracting the redex at position p
deletes a sequence of unlabelled nodes and ε-labelled edges from φ(Π) directly
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following the node φ(n).
Repeatedly contract a residual of redex in U that is at minimal depth. Since

only finite sequences of nodes and edges occur and since terms are finitely
branching, it follows by the above observations regarding paths that the con-
tracted redexes occur at increasingly greater depths along the constructed reduc-
tion. Hence, the reduction is strongly convergent and since redexes at minimal
depth are contracted the reduction must also be a complete development.

Roughly, the above proof is identical to the proof of Proposition 12.5.9 in
[17], except that Lemma 6.7 is employed instead of tracing.

6.2 Developments

With the Finite Jumps Developments Theorem in hand, we can now precisely
characterise the sets of redexes having complete developments. This character-
isation seems to be new.

Recall that we are working with an orthogonal iCRS and that U is a set of
redexes in a term s.

Lemma 6.11. The set U has a complete development iff U has the finite jumps
property.

Proof. To prove that the finite jumps property holds if U has a complete de-
velopment, suppose U does not have the finite jumps property. That is, there
exists a path projection φ(Π) of s with respect to U that ends in an infinite
sequence of unlabelled nodes and ε-labelled edges.

We show by ordinal induction that for every sα in the complete development,
with residuals Uα = U/(s � sα) of U , that there exists a path projection φ(Πα)
of sα with respect to Uα that has an infinite sequence of unlabelled nodes and
ε-labelled edges. Obviously, for s0 = s, this is immediate.

For sα+1, it follows by the induction hypothesis that there exists path pro-
jection φ(Πα) that has an infinite sequence of unlabelled nodes and ε-labelled
edges. By Lemma 6.7, a path projection φ(Πα+1) is obtained by deleting finite
sequences of unlabelled nodes and ε-labelled edges from φ(Π). Hence, φ(Πα+1)
must also have an infinite sequence of unlabelled nodes and ε-labelled edges.

For sα with α a limit ordinal, we have by strong convergence that φ(Πα)
can be obtained from φ(Π) by deleting all unlabelled nodes and ε-labelled edges
deleted in the previous steps. Also by strong convergence, the deleted nodes
and edges occur at an increasingly greater distance from the starting node of
the path projections considered along the complete development. Hence, an
increasing part of the infinite sequence of unlabelled nodes and ε-labelled edges
is stable along the complete development. This implies that φ(Πα) also has such
an infinite sequence.

Thus, a path projection that has an infinite sequence of unlabelled nodes and
ε-labelled edges is present after each complete development of U . By definition
of paths and path projections this implies that a descendant of a redex in U
occurs in the final term of the complete development. However, this contradicts
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the fact that no descendants of redexes in U occur in the final term of a complete
development. Hence, U must have the finite jumps property.

That U has a complete development if it has the finite jumps property is an
immediate consequence of Theorem 6.10(4).

The result we were aiming at now follows easily.

Theorem 6.12. If U has a complete development, then all complete develop-
ments of U end in the same term.

Proof. By Lemma 6.11, if U has a complete development, then it has the finite
jumps property. But then, each complete development of U ends in the same
term by Theorem 6.10(1).

6.3 Properties of Developments

We next prove a number of properties of complete developments that will prove
to be of use in later sections. Again, recall that we assume we are working in
an orthogonal iCRS and that U is a set of redexes in a term s.

Notation 6.13. If there exists a complete development of U resulting in a term
t, then we write s⇒ t, where the arrow is adorned with U if needed.

Lemma 6.14. If U has a complete development and if s � t is a (not neces-
sarily complete) development of U , then U/(s � t) has a complete development.

Proof. Since U has the finite jumps property by Lemma 6.11, it follows by
inspection of the proof of Theorem 6.10(1) that U/(s � t) also has the finite
jumps property. Hence, the result now follows by applying Lemma 6.11 to
U/(s � t).

Lemma 6.15. If U has a complete development and if u is a redex in s, then
U ∪ {u} has a complete development.

Proof. Perform a complete development of U , resulting in a term t. By definition
of valuations and substitutions, nestings of u can only be created by the redexes
above u in the initial term. Since there are only finitely many such redexes
and since the right-hand side of each rewrite rules satisfies the finite chains
condition, only finite chains of residuals of u occur in t (though infinite nestings
are still possible). Repeatedly contract a residual of u that is at minimal depth.
Since only finite chains of residuals of u occur and since residuals of u cannot
nest other residuals of u, it follows by terms being finitely branching that the
minimal depth at which redexes are contracted increases after a finite number
of steps. Hence, the reduction defined in this way is strongly convergent and
contracts all residuals of u, resulting in a complete development of U ∪{u}.
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Proposition 6.16. Let U have a complete development s ⇒ t and let v be a
redex in s. The following diagram exists:

s
v

U

t′

U/(s→t′)

t
v/(s�t)

s′

Proof. Immediate by Lemmas 6.14 and 6.15, Theorem 6.12 and the fact that
(U ∪ {v})/(s→ t′) = U/(s→ t′) and (U ∪ {v})/(s � t) = v/(s � t).

Lemma 6.17. If U is finite, then it has a finite complete development.

Proof. By induction on the number of redexes in U . If U is empty, we are
done. Otherwise, by the finiteness of U , there exists a redex v ∈ U such that no
redexes from U occur in its arguments. Contract v. Since no redexes occur in
the arguments of v, the set U/v contains one redex less than U . The induction
hypothesis now furnishes the result.

The following proposition establishes commutativity of a diagram which we
will later use to establish certain ‘emaciated’ projections in Section 8.

Proposition 6.18. Let U and V be sets of redexes in s such that U has a
complete development s⇒ t and V is finite. The following diagram exists:

s
V

U

t′

U/(s�t′)

t
V/(s�t)

s′

Proof. By Lemma 6.17, we have that V has a finite complete development.
Denote this development by

s = s0 → s1 → · · · → sn = t′ ,

where si → si+1 is assumed to contract a redex vi+1. By Proposition 6.16 we
can erect the following diagram, where Si denotes s0 →∗ si and Ti+1 denotes
si � ti and where (U/Si)/(si → si+1) = U/Si+1 by definition of residuals:

s0
v1

U

s1
v2

U/S1

·

U/S2

·
vn sn

U/Sn

t0
v1/T1

t1
v2/T2

· ·
vn/Tn

tn

The reduction v1/T1; v2/T2; . . . ; vn/Tn is a complete development of V/T1: By
definition only residuals from redexes in V are contracted. Moreover, if not
all residuals were contracted, then neither does Sn contract all residuals of V,
which is impossible by definition. Hence, by defining t = t0 and s′ = tn, the
result follows.
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7 Tiling Diagrams

We use the notion of a tiling diagram from [17]:

Definition 7.1. A tiling diagram of two strongly convergent reductions S :
s0,0 →α sα,0 and T : s0,0 →β s0,β is a rectangular arrangement of strongly
convergent reductions:

s0,0 s0,1 s0,δ s0,δ+1 s0,β

s1,0 s1,1 s1,δ s1,δ+1 s1,β

sγ,0 sγ,1 sγ,δ
Tγ,δ

Sγ,δ

sγ,δ+1 sγ,β

sγ+1,0 sγ+1,1 sγ+1,δ sγ+1,δ+1 sγ+1,β

sα,0 sα,1 sα,δ sα,δ+1 sα,β

such that (1) each reduction Sγ,δ : sγ,δ � sγ+1,δ is a complete development of
a set of redexes of sγ,δ, and similarly for Tγ,δ : sγ,δ � sγ,δ+1, (2) the leftmost
vertical reduction is S and the topmost horizontal reduction is T , and (3) for
each γ and δ the set of redexes developed in Sγ,δ is the set of residuals of the
redex contracted in sγ,0 → sγ+1,0 across the (strongly convergent) reduction
Tγ,[0,δ] : sγ,0 → sγ,1 → · · · sγ,δ (symmetrically for Tγ,δ).

For S[0,α],β we usually write S/T and we call this reduction the projection of
S across T (similarly for Tα,[0,β] and T/S). Moreover, if T consists of a single
step contracting a redex u, we also write S/u (symmetrically T/u).

The following extends Theorem 12.6.5 in [17], where it is assumed that S
and T are reductions of limit ordinal length, to reductions of arbitrary length:

Theorem 7.2. Let S and T be strongly convergent reductions starting from the
same term. Suppose that the tiling diagram for S and T exists except that it
is unknown if S/T and T/S are strongly convergent and end in the same term.
The following are equivalent:

1. The tiling diagram of S and T can be completed, i.e. S/T and T/S are
strongly convergent and end in the same term.

2. S/T is strongly convergent.

3. T/S is strongly convergent.

Proof. Obviously, the first statement trivially implies the second and third.
Hence, we only need to prove that the first holds under assumption of either the
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second or the third statement. Without loss of generality there are three cases
to consider depending on the lengths of S and T , i.e. α and β.

• In case α = α′ + 1 and β = β′ + 1, write U = u/Tα′,[0,β′] and V =
v/S[0,α′],β′ , where u is the redex contracted in sα′,0 → sα,0 and v the
redex contracted in s0,β′ → s0,β .

Assume that S/T is strongly convergent. By definition of tiling diagrams,
Sα′,β′ is a (not necessarily complete) development of U∪V and Tα′,β′ ;Sα′,β

is a complete development of U ∪ V. By Lemma 6.14 and Theorem 6.12,
it now follows that there exists a complete development of (U ∪ V)/Sα′,β′

that starts in sα′,β and ends in the same term as Tα′,β′ ;Sα′,β . Since
(U∪V)/Sα′,β′ = V/Sα′,β′ by definition of Sα′,β′ , the complete development
is in fact a complete development of residuals of v in sα′,β . Hence, it
completes the tiling diagram as required.

Assume now that T/S is strongly convergent. Since α and β are both
successor ordinals the proof proceeds completely symmetrical to the case
in which strong convergence of S/T is assumed.

• In case α is a limit ordinal and β = β′+1, write v for the redex contracted
in s0,β′ → s0,β . That S/T and T/S end in the same term follows immedi-
ately in case S/T and T/S are both strongly convergent, since this implies
that for larger γ < α more residuals of v up to greater depths must occur
at the same positions in sγ,β′ and sα,β′ . Hence, we only need to prove
strong convergence.

Assume that S/T is strongly convergent and T/S is not. By assumption
there exists a position p of minimal depth d such that an infinite number
of residuals of v are contracted in T/S. That is, since residuals of v cannot
nest each other, an infinite collapsing chain of residuals of v exists in sα,β′ .
By strong convergence of S[0,α],β′ , there exists a γ < α such that all steps
in S[γ,α],β′ occur below depth d. By definition of γ and the infinite chain
in sα,β′ , each sκ,β with γ < κ < α has a finite collapsing chain of residuals
of v at position p. No infinite chain can occur at position p in sκ,β′ , since
each Tκ,β′ is strongly convergent. The finite chains of residuals of v become
arbitrary large along S[γ,α],β′ , otherwise no infinite chain exists in sα,β′ .
However, this implies that for every point along the strongly convergent
reduction S/T a redex is contracted at position p somewhere later along
the reduction, contradiction. Hence, T/S is strongly convergent.

Assume now that T/S is strongly convergent and S/T is not. By assump-
tion there exists a position p of minimal depth d such that an infinite
number of reductions occur at p in S/T . Moreover, by strong convergence
of S[0,α],β′ and the minimality of d, there exists a γ < α such that all
redexes contracted in S[γ,α],β′ and S[γ,α],β occur at depth d or below.

In sγ,β′ only a finite number of residuals of v occur at depth less than d.
Hence, the subterms of sγ,β at depth d or below consist of finite chains
of parallel subterms that occur at depth d in sγ,β′ , with all residuals of
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v contracted. By definition of γ and since the chains consist of parallel
subterms, it follows that all redexes contracted in S[γ,α],β occur within
the chains and that no further nestings can be created among the chains.
In fact, since the subterms are parallel, further nestings cannot even be
created within the chains. But then, there exists a point along S[γ,α],β such
that precisely one of the subterms of sγ,β′ is responsible for the infinite
number of reductions at p. Since S is strongly convergent, this implies
that the subterm has at its root a collapsing chain of residuals of v that
becomes arbitrary large along S[γ,α],β′ . Whence, there exists an infinite
collapsing chain in the limit sα,β′ . Since the chain cannot be erased by
contracting other residuals of v, otherwise the infinite reduction in at p in
S[γ,α],β does not exist, it follows that T/S cannot be strongly convergent
as a complete development of residuals of v in sα,β′ , contradiction. Hence,
S/T is strongly convergent.

• If α and β are limit ordinals, then the result follows by Theorem 12.6.5
in [17]. The proof is independent of the details of rewriting, except for
its use of one lemma — Lemma 12.5.12 — which also holds in the case of
iCRSs and is Lemma 4.18 above.

8 Essentiality

Considering only fully-extended, orthogonal iCRSs from this section onwards, we
define a ‘measure’ on finite sequences of complete developments. The measure
satisfies certain favourable properties with respect to projection of reductions
and is employed in Sections 9 and 10. The measure is inspired by a proof tech-
nique originally developed by Sekar and Ramakrishnan [32] to study normalising
strategies in rewriting. The technique was later refined by Middeldorp [27] and
extended to higher-order rewriting by Van Oostrom [38]. We build on the latter
work. Where the techniques of Sekar and Ramakrishnan, Middeldorp, and Van
Oostrom apply to finite reductions, ours applies to finite sequences of complete
developments. A shift to finite sequences of complete developments is necessary,
because in the current setting projecting one reduction step over another may
yield an infinite complete development of the residuals of the projected redex.

8.1 Prefixes

To define the measure on finite sequences of complete developments, we first
define the notion of (path) prefix and those of essential positions and redexes.

Definition 8.1. A prefix of a term s is a finite set P ⊆ Pos(s) such that all
prefixes of positions in P are also in P .

Take heed that prefixes are finite!
We now relate paths, as defined in Section 6.1, with prefixes. In particular,

we need a notion of paths that ‘occur’ in a prefix of a term where some set of
redexes is present.
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Definition 8.2. Let s and t be terms, U a set of redexes in s such that s⇒U t,
and P a prefix of t. The path prefix of P with respect to U is the set of all paths
Π of s with respect to U such that the concatenation of the edge labels of the
path projection φ(Π) is in P .

Example 8.3. Consider the iCRS of Example 6.5 and the terms s = f([x]g(x), a)
and t = g(g(g(a))). Observe that s → t. The set P = {ε, 1, 11} is a prefix of
t. Let U be the set containing the only redex of s. The path prefix of P with
respect to U is the set of all paths that are prefixes of

(s, ε) → (r, ε, ε) → (s, 10)
1
→ (s, 101) → (r, 1, ε)

1
→ (r, 11, ε) → (s, 10) .

Given a path prefix with respect to some set of redexes in a term, we would
like to recover the positions ‘encountered’ by the paths in the path prefix, in
particular the positions in the redex patterns encountered by the paths. The
following map facilitates this recovery:

Definition 8.4. Let s be a term and U a set of redexes in s. The map ζ from
finite paths Π of s with respect to U , with final node n, to finite subsets of
Pos(s) is defined as follows:

ζ(Π) =











{p} if n = (s, p) and no redex in U occurs at p

Q if n = (s, p) and a redex u ∈ U occurs at p

∅ if n = (r, p, pu)

where Q is the set of positions of s that occur in the redex pattern of u.

The following lemma shows that ζ can be extended to a well-defined function
on path prefixes:

Lemma 8.5. Let s and t be terms, U a set of redexes in s such that s ⇒U t,
and P a prefix of t. If Ψ is the path prefix of P with respect to U , then ζ(Ψ) =
{ζ(Π) | Π ∈ Ψ} is well-defined and a prefix of s.

Proof. Let Ψ be the path prefix of P with respect to U . Since U has a complete
development, it follows by Lemma 6.11 that U also has the finite jumps property,
i.e. all path projections in P(s,U) contain only finite sequences of unlabelled
nodes and ε-labelled edges. As each path is a prefix of a maximal path, whose
path projections are in P(s,U), it follows by definition of path projections and
the finite jumps property that each path in Ψ is finite. Hence, ζ(Ψ) is well-
defined.

For each position in the prefix P of t a finite number of paths is included in
Ψ. This follows by induction on the length of the positions, employing the fact
that all path projections contain only finite sequences of unlabelled nodes and
ε-labelled edges and the fact that the extension of a path is uniquely determined
by definition of paths and the considered position. Since P is finite, the same
follows for Ψ. Hence, as ζ maps each finite path to a finite number of positions,
ζ(Ψ) is finite.
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Suppose for a certain p ∈ ζ(Ψ) that there exists a q < p such that q 6∈ ζ(Ψ).
There are two possibilities: q occurs either in the redex pattern of a redex in
U , or not. In case q occurs in the redex pattern of a redex u ∈ U , it follows by
p ∈ ζ(Ψ) and the definition of paths that there exists a path in the path prefix
which ends in the node (s, pu), with pu the position of the redex u. However,
we then have that q ∈ ζ(Ψ) by definition of ζ, contradiction. In case q does not
occur in a redex pattern, it follows by the definition of paths and the inclusion
of p in ζ(Ψ) that there is a path in the path prefix which ends in the node
(s, q), again a contradiction by definition of ζ. Hence, all prefixes of positions
in ζ(Ψ) are included in ζ(Ψ). Employing the finiteness of ζ(Ψ) the result now
follows.

By the previous lemma, it is easy to see that the following is well-defined:

Definition 8.6. Let s and t be terms, U a set of redexes in s such that s⇒U t,
and P a prefix of t. A position p ∈ Pos(s) is called essential for P if p ∈ ζ(Ψ)
with Ψ the path prefix of P with respect to U .

Thus, intuitively, a position is essential if it ‘contributes’ to the prefix of the
final term t of a complete development.

Example 8.7. In Example 8.3, consider the prefix P . The positions ε, 1, 10, and
101 are essential for P in s.

The next proposition shows that an essential position will always descend
to a position in the assumed prefix in case the position does not occur in the
redex pattern of any redex in the assumed complete development.

Proposition 8.8. Let s and t be terms, U a set of redexes in s such that s⇒U t,
and P a prefix of t. If p ∈ Pos(s) does not occur in the redex pattern of any
redex in U and is not the position of a variable bound by a redex in U , then p is
essential iff there exists a q ∈ P such that q ∈ p/(s⇒ t) and p is inessential iff
no descendant of p occurs in P .

Proof. By Lemma 6.11, it follows that U has the finite jumps property. Employ-
ing the labelling from the proof of Theorem 6.10(2) and its properties, it is easy
to see that a position p ∈ Pos(s) descents to a position q ∈ Pos(t) iff p does not
occur in a redex pattern of a redex in U and there exists a finite path Π with
final node n = (s, p) such that φ(n) is labelled and such that the concatenation
of the edge labels of the path projection of Π is q. Since ζ(Π) = {p}, the result
follows by definition of path prefixes.

As the set of positions obtained through application of ζ is a prefix by Lemma
8.5, essentiality is easily extended to a finite sequence of complete developments
s0 ⇒U1 s1 ⇒U2 · · · ⇒Un sn: In case of sn, define the positions of P as essential.
In case of si, with i < n, define the positions that are essential for the essential
positions of si+1 as essential. We can now define the following:

Definition 8.9. A redex in a term si along s0 ⇒U1 s1 ⇒U2 · · · ⇒Un sn is called
essential for a prefix P of sn, if a residual of the redex occurs in a set Uj with
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j > i and if the position at which the residual occurs is essential. The redex is
called inessential otherwise.

8.2 Measure

In this section, we assume that D denotes a finite sequence of complete devel-
opments s0 ⇒U1 s1 ⇒U2 · · · ⇒Un sn. Moreover, we assume that P is a prefix of
sn, the final term of D. We define a measure on D with respect to P :

Definition 8.10. The measure µP (D) of the finite sequence of complete de-
velopments D with respect to P is the n-tuple (ln, . . . , l1) — note the reverse
order! — such that li, with 1 ≤ i ≤ n, denotes the cardinality of the path prefix
of Pi with respect to Ui, where Pi is the set of positions in si essential for P .

The tuples in the above definition are compared first length-based and then
lexicographically (in the natural order). This yields a well-founded order, as
each element of a tuple is finite by Lemma 8.5. We denote the order by ≺.

Before proving any properties of the measure, we introduce some useful
terminology:

Definition 8.11. Let s and t be terms and P a prefix of s. The term t mirrors
s in P , if P ⊆ Pos(t) and root(t|p) = root(s|p) for all p ∈ P .

Definition 8.12. Let D′ denote t0 ⇒V1 t1 ⇒V2 · · · ⇒Vn tn. If tn mirrors sn in
the prefix P , then D′ mirrors D in P if for all 0 ≤ i ≤ n it holds that ti mirrors
si in Pi and Pi is the set positions essential for P in both si and ti.

The following lemma is key for the use of the measure:

Lemma 8.13. For D there exists a finite sequence of complete developments
D′ : t0 ⇒V1 t1 ⇒V2 · · · ⇒Vn tn, with Vi consisting of a finite number of essential
redexes for all 1 ≤ i ≤ n, such that D′ mirrors D in P and µP (D′) = µP (D).

Proof. By induction on n, the number of complete developments in D. In case
n = 0, define t0 = s0 and the result is immediate by definition of t0.

In case n > 0, let U ′
n contain the redexes from Un essential for P and write

P ′ for the set of positions of sn−1 essential for P . Observe for each u ∈ U ′
n that

all positions in the redex pattern of u occur at positions in P ′ by definition of
ζ. Hence, since we have by the induction hypothesis that tn−1 mirrors sn−1 in
P ′, it follows by orthogonality and fully-extendedness that there exists for each
redex in U ′

n a redex in tn−1 such the positions and the employed redex patterns
are identical. Define Vn to be the set of these corresponding redexes in tn−1.
Obviously, the sets Vn and U ′

n have the same cardinality, which is finite because
P ′ is finite.

Since Vn is finite, it follows by Lemma 6.17 that there exists a complete
development tn−1 ⇒Vn tn. Moreover, since P ′ is a prefix and tn−1 mirrors
sn−1 in P ′, it follows by definition of paths and Vn that for each path of sn−1

with respect to Un occurring in the path prefix of P there exists an identical
path of tn−1 with respect to Vn. Hence, by definition of path projections, we
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have for the terms matching P(sn−1,Un) and P(tn−1,Vn), i.e. sn and tn, that
P ⊆ Pos(tn), root(sn|p) = root(tn|p) for all p ∈ P , and that all positions in P ′

and redexes in Vn are essential for P . The induction hypothesis now furnishes
the result.

Observe that the above lemma ‘cuts down’ the sets of redexes that occur in
the sequence of complete developments to finite sets consisting solely of essential
redexes. The lemma states that this suffices to obtain a term tn with prefix P .

We can now define the following:

Definition 8.14. Let Ui be finite for all 1 ≤ i ≤ n in D. If s0 → t0 contracts a
redex u such that no redex in u/D occurs at a position in P , then the emaciated
projection of D across s0 → t0 with respect to P , written D�u, is defined by
application of Lemma 8.13 to D/u.

That the projection D/u in the above definition exists follows by repeated
application of Proposition 6.18. The final term of D/u mirrors the final one of
D in P , as no redex of u/D occurs at a position in P . Hence, Lemma 8.13 can
be applied and the final term of D�u mirrors the final one of D in P .

The next two lemmas concern changes to the measure when taking emaciated
projections.

Lemma 8.15. Let Ui be finite for all 1 ≤ i ≤ n in D. If s0 → t0 contracts an
inessential redex u such that no redex in u/D occurs at a position in P , then the
position of u is inessential for P , D�u mirrors D in P , and µP (D�u) = µP (D).

Proof. Suppose that s0 → t0 contracts an inessential redex u such that no redex
in u/D occurs at a position in P . Denote D/u by t0 ⇒V1 t1 ⇒V2 · · · ⇒Vn tn
where Vi = Ui/(si−1 ⇒ ti−1) for all 1 ≤ i ≤ n.

For all 0 ≤ i < n, no residual of u occurs at an essential position in si.
Otherwise, a residual also occurs at an essential position in si+1 by definition
of residuals and Proposition 8.8. Iteratively, a residual then occurs in sn at a
position in P , contradicting assumptions. Hence, by induction we have that
ti mirrors si in Pi, where Pi is the set of position essential for P in both si

and ti. Moreover, for each essential redex in Uj , with 1 ≤ j ≤ n, there exists
an essential redex in Vj such that the redex positions and the employed redex
patterns are identical, and vice versa.

Write µP (D) = (ln, . . . , l1) and µP (D/u) = (l′n, . . . , l
′
1). For all 1 ≤ j ≤ n

the path prefixes of Vj and Uj have the same cardinality by the correspondence
between the essential redexes, i.e. l′j = lj . Thus, µP (D/u) = µP (D) and by
Lemma 8.13 it follows that µP (D�u) = µP (D).

Lemma 8.16. Let Ui be finite for all 1 ≤ i ≤ n in D. If s0 → t0 contracts
an essential redex u such that no redex in u/D occurs at a position in P , then
µP (D�u) ≺ µP (D).

Proof. Suppose that s0 → t0 contracts an essential redex u such that no redex
in u/D occurs at a position in P . Denote D/u by t0 ⇒V1 t1 ⇒V2 · · · ⇒Vn tn
where Vi = Ui/(si−1 ⇒ ti−1) for all 1 ≤ i ≤ n.
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Let i be the largest index of a set Ui such that the set contains a residual of
u that is essential. No residual of u occurs at an essential position in sj with
i < j < n. Otherwise, a residual also occurs at an essential position in sj+1 by
definition of residuals and Proposition 8.8. Iteratively, a residual then occurs
in sn at a position in P , contradicting assumptions. Hence, by induction we
have for all i < j ≤ n that tj mirrors sj in Pj , where Pj is the set of positions
essential for P in both sj and tj . Moreover, for each essential redex in Uj , there
exists an essential redex in Vj such that the redex positions and the employed
redex patterns are identical, and vice versa.

Write µP (D) = (ln, . . . , l1) and µP (D/u) = (l′n, . . . , l
′
1). For all j < i, the

cardinality of the path prefix of Vj may be greater than the one of Uj , i.e. we
may have l′j 6= lj . The cardinality of the path prefix of Vi is less than that of
Ui by Proposition 6.6 and Lemma 6.7. Hence, l′i < li. Finally, for all i < k ≤ n
the path prefixes of Vk and Uk have the same cardinality by the correspondence
between the essential redexes, i.e. l′k = lk. Thus, µP (D/u) ≺ µP (D) and by
Lemma 8.13 it follows that µP (D�u) ≺ µP (D).

The final lemma of this section allows us to ‘simulate’ a development of
redexes in a term s by another development of redexes in term mirroring s
without changing the measure of the development.

Lemma 8.17. Let Ui be finite for all 1 ≤ i ≤ n in D. If a term t0 mirrors
s0 in the positions of s0 essential for P , then there exists a finite sequence
of complete developments D′ starting in t0 such that D′ mirrors D in P and
µP (D′) = µP (D).

Proof. By Lemma 8.13 we may assume for each 1 ≤ i ≤ n that all redexes in
Ui are essential. The proof proceeds by induction on n, the number of complete
developments in D. In case n = 0, the result is immediate by assumption.

In case n > 0, it follows by the induction hypothesis that tn−1 mirrors sn−1 in
P ′, with P ′ the set of positions of sn−1 essential for P . Hence, by orthogonality
and fully-extendedness there exists for each redex in Un a redex in tn−1 such
that the positions and the employed redex patterns are identical. Define Vn to
be the set of these corresponding redexes in tn−1. Obviously, the sets Vn and
Un have the same cardinality, which is finite because P ′ is finite.

Since P ′ is a prefix and tn−1 mirrors sn−1 in P ′, it follows by definition of
paths and Vn that for each path of sn−1 with respect to Un occurring in the path
prefix of P there exists an identical path of tn−1 with respect to Vn. Hence, by
definition of path projections, we have for the terms matching P(sn−1,Un) and
P(tn−1,Vn), i.e. sn and tn, that P ⊆ Pos(tn), root(sn|p) = root(tn|p) for all
p ∈ P , and that all positions in P ′ and redexes in Vn are essential for P . The
induction hypothesis now furnishes the result.

9 Confluence

It is well-known that confluence does not hold for iTRSs even under assumption
of orthogonality [18]. Since each iTRS can be viewed as a fully-extended iCRS,
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it follows that fully-extended, orthogonal iCRSs are in general not confluent
either. In the case of iTRSs two approaches are known for restoring confluence
[18]: identifying all subterms that disrupt confluence and restricting the rules
that are allowed. Identifying all subterms that disrupt confluence leads to the
definition of so-called hypercollapsing subterms and the result that orthogonal
iTRSs are confluent modulo these subterms. Restricting the rules that are
allowed leads to results regarding almost non-collapsing iTRSs.

Continuing to consider only fully-extended, orthogonal iCRSs, we next prove
that these iCRSs are confluent modulo hypercollapsing subterms, where a term
s is called hypercollapsing if for every s � t we have that t is reducible to a
collapsing redex. The result generalises similar results for iTRSs and iλc. Alas,
the proofs for iTRSs and iλc from [17] cannot be lifted to the general higher-
order case: For iTRSs the proof hinges on the Strip Lemma and for iλc it
hinges on the notion of head reduction, both of which fail to properly generalise
to iCRSs. To circumvent these problems, we employ the measure defined in the
previous section.

Apart from confluence modulo, we show in Section 9.3 that the positive result
that an iTRS is confluent iff it is almost non-collapsing cannot be trivially lifted
to iCRSs.

Remark 9.1. On a historical note: Courcelle [6] notes similar problems with
confluence while trying to define second-order substitutions on infinite trees.
He works around these problems by requiring rules to be non-collapsing. In a
general setting such as ours this would be too harsh of a restriction.

9.1 Hypercollapsingness

We now treat a special kind of troublesome reductions and terms.

Definition 9.2. A hypercollapsing reduction of length α is an open strongly
continuous reduction with an infinite number of root-collapsing steps.

Thus, a hypercollapsing reduction is a transfinite reduction of limit ordinal
length which is not strongly convergent, as such the term sα is omitted. Note
that if we write (sβ)β<α for a hypercollapsing reduction sequence, then we have
that every initial sequence (sβ)β<γ+1 with γ < α is strongly convergent.

Example 9.3. Hypercollapsing reductions are known even in the first order case
where we have, e.g. (in the syntax of iCRSs) the reduction rule f(Z) → Z and
the term fω from which there is the hypercollapsing reduction

fω → fω → · · ·

which is obtained by repeatedly contracting the redex at the root.
For example of a more higher-order spirit consider the rule g([x]Z(x)) →

Z([x]Z(x)). From the term g([x]g(x)) there is the hypercollapsing reduction

g([x]g(x)) → g([x]g(x)) → · · · .
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The crucial definition is now the following:

Definition 9.4. A term s is said to be hypercollapsing if, for all terms t with
s � t, there exists a term t′ with t � t′ such that t′ has a collapsing redex at
the root.

It is not hard to see that a hypercollapsing term has a hypercollapsing re-
duction starting from it; the converse, however, is much more difficult, and is
contained in the following lemma, to the proof of which we devote the remainder
of the section.

Lemma 9.5. Let s be a term. If there is a hypercollapsing reduction starting
from s, then s is hypercollapsing.

To start, we observe that hypercollapsing reductions satisfy a ‘compression’
property:

Lemma 9.6. Let s be a term. If there is a hypercollapsing reduction starting
from s, then there is a hypercollapsing reduction of length ω starting from it.

Proof. By definition of hypercollapsing reductions we may write a hypercollaps-
ing reduction starting from s as:

s = s0 � s′0 → s1 � s′1 → s2 � · · · ,

where for all i ∈ N we have that s′i → si+1 is root-collapsing and such that no
root-collapsing steps occur in si � s′i.

To show that a hypercollapsing reduction of length ω exists, let i ∈ N be
arbitrary and assume there exists a term ti such that ti �

≤ω si. By definition,
the reduction ti � si � s′i → si+1 � · · · is hypercollapsing and by compression
we have ti →

∗ t′i → ti+1 �
ω si+1 with t′i → ti+1 a root-collapsing step. Hence,

if we define t0 = s0 = s, we obtain the following reduction:

s = t0 →∗ t′0 → t1 →∗ t′1 → t2 →∗ · · · ,

where for all i ∈ N we have that t′i → ti+1 is root-collapsing and such that
no root-collapsing steps occur in ti →∗ t′i. Since each ti →∗ t′i is finite and
is followed by a root-collapsing step t′i → ti+1, there exists a hypercollapsing
reduction of length ω starting from s, as required.

The following is the iCRS analogue of Lemma 12.8.4 in [17] for iTRSs and
strengthening for iλc:

Lemma 9.7. Let s be a term. If there exists a hypercollapsing reduction starting
from s, and a rewrite step s → t, then there is a hypercollapsing reduction
starting from t.

Proof. Define s0 = s, t0 = t, and suppose that u is the redex contracted in
s → t. By Lemma 9.6, we may write the hypercollapsing reduction starting in
s0 as:

s0 →∗ s′0 → s1 →∗ s′1 → s2 →∗ · · · ,
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where for all i ∈ N, s′i → si+1 is root-collapsing and such that no root-collapsing
steps occur in si →∗ s′i. By repeated application of Proposition 6.16 we can
erect the following diagram:

s0

u

∗
s′0

U ′

0

s1

U1

∗
s′1

U ′

1

s2

U2

∗
·

t0 t′0 t1 t′1 t2 ·

Write Si for si →
∗ s′i → si+1 � · · · and Ti for ti � t′i � ti+1 � · · · . If it holds

for each i ∈ N that a root-collapsing step occurs in Ti, then an infinite number of
root-collapsing steps occurs in T0 implying that the reduction is hypercollapsing.

To show that a root-collapsing step occurs in each Ti we distinguish two
cases: (1) a root-collapsing step occurs in Si that does not contract a residual
of u, and (2) all root-collapsing steps contract residuals of u. We deal with each
of these cases in turn:

1. In this case there is a root-collapsing step s′j → sj+1 with j > i where the
contracted redex, say v, is not a residual of u. Since U ′

j by construction
contracts only residuals of u, we have by orthogonality that a residual of
v occurs at the root of t′j and that no other residuals of v occur in t′j . Also
by construction, t′j � tj+1 contracts precisely all residuals of v. Hence,
t′j � tj+1 is a root-collapsing step.

2. In this case, first observe that u is a collapsing redex and that no infinite
chains of residuals of u can occur in any sk and s′k with k ≥ i by the fact
that only a finite number of reductions occur before sk and s′k, and because
right-hand sides of rules only allow for finite chains of meta-variables.

Next observe that all terms in the topmost reduction must have a residual
of u at the root, since we would otherwise have a root-step in some term
that brings a residual of u to the root. Such a step is by definition root-
collapsing.

Finally, observe that the residual of u at the root of si is part of a finite
chain of residuals of u, where each residual next in the chain is substituted
for the variable that occurs at the root of the right-hand side of the rewrite
rule employed in contracting u.

As residuals of u cannot create further nestings of other residuals of u,
we have for each step following si that each of the residuals in the chain
starting at the root has at most one residual. Eventually the number of
residuals must become zero as (1) u is a collapsing redex and as (2) an
infinite number of root steps occur in Si. Since the residuals always occur
in a chain starting at the root we have that the last of the residuals is
always contracted by means of a root step, say s′j → sj+1.

Now suppose that no collapsing redexes are contracted in si →
∗ sj+1 that

have a residual occurring at the root of one of the terms in ti � tj+1.
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Then, since residuals of u occur in finite chains and cannot nest other
residuals of u and since every development of Uk and U ′

k contracts only
residuals of u, it follows that no residual of u can occur at the root of
sj+1, a contradiction. Hence, at least one root-collapsing step occurs in
ti � tj+1.

As required, we have that a root-collapsing step occurs in each Ti. Hence,
T0 is a hypercollapsing reduction starting from t0 = t.

The next lemma shows that the property of being reducible to a term with
a collapsing redex at the root cannot be destroyed by reductions, unless they
contain a collapsing step at the root themselves.

Lemma 9.8. If s � t contains no root-collapsing steps and s reduces to a
collapsing redex, then so does t.

Proof. We show by ordinal induction that every term sα in s � t reduces to a
collapsing redex by a finite sequence Dα of complete developments, where each
set of redexes is finite. Denote by Pα the set of positions of the redex pattern
at the root of the final term of Dα. To facilitate the induction we also show for
all β ≤ α that µPα

(Dα) � µPβ
(Dβ) and that sα mirrors sβ in the positions of

sβ essential for Pβ in case µPα
(Dα) = µPβ

(Dβ).
For s0 = s, it follows by assumption that s0 reduces to a root-collapsing

redex. In fact, by strong convergence and compression, s0 reduces to a root-
collapsing redex by a finite reduction D0. As any finite reduction can be seen
as a finite sequence of complete developments, where each set of redexes is a
singleton set, the result follows.

For sα+1, there are two cases to consider with respect to the redex u con-
tracted in sα → sα+1 depending on the occurrence of a residual of u at the root
of the final term of Dα:

• In case no residual of u occurs at the root of the final term of Dα, we
discriminate between u being either essential or inessential for Pα. If u is
essential, the result follows by Lemma 8.16 and the induction hypothesis.
If u is inessential, the result follows by Lemma 8.15 and the induction
hypothesis.

• In case a residual of u occurs at the root of the final term of Dα, a root-
collapsing step not contracting a residual of u occurs somewhere along
Dα. Otherwise, a residual of u cannot occur at the root of the final term
of Dα since u itself is not root-collapsing. Hence, there exists a finite
sequence D′

α of complete developments, where each set of redexes is finite,
that is shorter than Dα and that has a collapsing redex, other than a
residual of u, at the root of its final term. By definition of ≺, it follows
that µP ′

α
(D′

α) ≺ µPα
(Dα), where P ′

α is the set of positions of the redex
pattern at the root of the final term of D′

α. The case in which no residual
of u occurs at the root of the final term of the complete development now
applies and the result follows.
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s ∼ t

s′ t′

s′′ ∼ t′′

Figure 6: Definition 9.9

For sα with α a limit ordinal, it follows by the well-foundedness of ≺ that
there exist a β < α such that for every β < γ < α we have µPγ

(Dγ) = µPβ
(Dβ).

Hence, by the induction hypothesis it follows for all β < γ < α that sγ mirrors sβ

in the positions of sβ essential for Pβ and, by strong convergence, sα mirrors sβ

in these positions. Consider Dβ . By Lemma 8.13 there exists a finite sequence
of complete developments D′

β starting in sβ contracting only essential redexes
such that the final term of D′

β has a collapsing redex at the root and such that
µP ′

β
(D′

β) = µPβ
(Dβ), where P ′

β is the set of positions of the redex pattern at the

root of the final term of D′
β . The result now follows by the induction hypothesis

and Lemma 8.17 applied to D′
β .

We can now prove Lemma 9.5:

Proof of Lemma 9.5. Let s � t be arbitrary. By compression and strong con-
vergence, we may write s →∗ t′ �

≤ω t such that all root-reductions occur in
s →∗ t′. By repeated application of Lemma 9.7, there exists a hypercollaps-
ing reduction starting from t′. In particular, t′ reduces to a collapsing redex.
Since t′ � t contains no steps at the root, Lemma 9.8 yields that t reduces to a
collapsing redex, proving that s is hypercollapsing.

9.2 Confluence Modulo

We now prove confluence modulo identification of hypercollapsing subterms.
Confluence modulo is defined as follows:

Definition 9.9. An iCRS is said to be confluent modulo an equivalence relation
∼ if s � s′ and t � t′ with s ∼ t implies existence of terms s′′ and t′′ such that
s′ � s′′ and t′ � t′′ with s′′ ∼ t′′ (see Figure 6).

We first show that identification of hypercollapsing subterms yields an equiv-
alence relation. To this end we introduce some notation and show that hyper-
collapsingness is preserved under replacement of hypercollapsing subterms.

Notation 9.10. We write s ∼hc t if t can be obtained from s by replacing a
number of hypercollapsing subterms of s by other hypercollapsing terms.

Proposition 9.11. Let s and t be terms. If s is hypercollapsing and s ∼hc t,
then t is hypercollapsing.
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Proof. Let P be the set of positions of hypercollapsing subterms in s that are
replaced to obtain t. By definition of s there exists a hypercollapsing reduc-
tion S starting from it. The redex patterns employed in the steps of S either
occur completely outside or completely inside the reducts of the subterms at
descendants of positions in P . This follows by orthogonality and the fact that
the subterms at positions in P are hypercollapsing, i.e. each reduct reduces to
a term with a collapsing redex at the root. It is irrelevant that any terms are
substituted into the reducts of the subterms at descendants of positions in P
along S by orthogonality and the fact that free variables cannot get bound when
substituted in the reducts.

Omit from S all steps that occur inside the reducts of the subterms at de-
scendants of positions in P to obtain a reduction S′ of length α. By definition
of S′, together with orthogonality and fully-extendedness, there exists a reduc-
tion T of length α starting in t such that for all β ≤ α we have that the redex
pattern and position of the redex contracted in the βth step of both S′ and T
are identical. Hence, if S′ is hypercollapsing then so T is and the result follows
by Lemma 9.5. If S′ is not hypercollapsing, then s reduces to a subterm at a
position p ∈ P and the same holds for T . As the subterm at position p in t is
hypercollapsing, there exist a hypercollapsing reduction starting from it. Again,
it is irrelevant that any terms are substituted in the subterm by orthogonality
and the fact that free variables cannot get bound when substituted. Hence, T
can be prolonged to obtain a hypercollapsing reduction and the result follows
again by Lemma 9.5.

We can now prove that ∼hc has the required properties:

Proposition 9.12. The relation ∼hc is an equivalence relation, which is closed
under substitution of terms for free variables.

Proof. We have to prove that the relation is reflexive, symmetric, and transitive.
Reflexivity and symmetry are immediate by definition. Transitivity follows by
Proposition 9.11.

To see that relation is closed under substitution, consider a hypercollapsing
term s and a term t that is a substitution instance of s. By definition of s there
exists a hypercollapsing reduction S of length α starting from it. By orthogo-
nality and the fact that no free variables are bound in the terms substituted in
s, there exists a reduction T of length α starting for t such that for all β ≤ α
we have that the redex pattern and position of the redex contracted in βth step
of both S and T are identical. Hence, since S is hypercollapsing, so is T and
the result follows by Lemma 9.5.

Introducing some further notation, we next show that we can accurately
‘simulate’ reductions in terms that are ∼hc-related.

Notation 9.13. By s→out t we denote a rewrite step that does not occur inside
any hypercollapsing subterm of s.
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Lemma 9.14. Let s � t such that α steps along the reduction occur outside
hypercollapsing subterms. If s ∼hc s

′, then there exists a reduction s′ �
out t′

of length α such that t ∼hc t
′. Moreover, for all β ≤ α it holds that the redex

pattern and position of the redex contracted in the βth step of s′ �
out t′ are

identical to those of the βth step of s � t that occurs outside a hypercollapsing
subterm.

Proof. Let s �
γ t and s ∼hc s

′. We prove the result by ordinal induction on γ.
If γ = 0, then the result is immediate, as an empty reduction is by definition

one that only contracts redexes outside hypercollapsing subterms.
If γ = δ + 1, then assume s �

γ t = s �
δ sδ → t. By the induction

hypothesis there exists a term s′δ such that s′ �
out s′δ and sδ ∼hc s

′
δ. There are

two possibilities for sδ → t, depending on the contracted redex occurring either
outside all hypercollapsing subterms or inside one of them:

• If the redex occurs outside all hypercollapsing subterms, then sδ ∼hc s
′
δ

together with orthogonality and fully-extendedness implies that a redex
employing the same rewrite rule as the redex contracted in sδ → t occurs
at the same position in s′δ. Moreover, the redex occurs outside all hyper-
collapsing subterms by Proposition 9.11. Hence, contracting the redex in
s′δ yields a step s′δ →out t′. That t ∼hc t

′ follows by sδ ∼hc s
′
δ and the

fact that the same rewrite rule is employed in both sδ → t and s′δ →out t′:
Clearly, t and t′ are identical at all positions p that descend from posi-
tions not in hypercollapsing subterms of sδ or s′δ. If q is the position of
a maximal hypercollapsing subterm of sδ, then it is also the position of
a maximal hypercollapsing subterm of s′δ and vice versa, by Proposition
9.11. The descendants of q occur at identical positions in t and t′ and are
(not necessarily maximal) hypercollapsing subterms, since sδ ∼hc s

′
δ and

since ∼hc is closed under substitution.

• If the redex occurs inside a hypercollapsing subterm, then t ∼hc sδ. Hence,
by transitivity of ∼hc we have t ∼hc s

′
δ and we can define t′ = s′δ.

If γ is a limit ordinal, then the result is immediate by strong convergence
and the induction hypothesis.

Before proving the main theorem of this section, we show that reductions
outside hypercollapsing subterms are confluent modulo ∼hc. To this end we first
prove a restricted variant of the Strip Lemma. It is of course well-known that
the usual Strip Lemma for iTRSs fails for iλc, and hence we see that it must
also fail for iCRSs.

Lemma 9.15 (Restricted Strip Lemma). If S : s �
out t and T : s →out t′,

then S/T and T/S exist and end in the same term.

Proof. Denote the length of S by α. We prove the Restricted Strip Lemma
by ordinal induction on α. Note that, since T contracts a single redex u, we
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have that T/S is actually a complete development of the residuals of u in t.
Obviously, if α = 0, then the result follows trivially.

If α is a successor ordinal, then the result is immediate by Proposition 6.16
and the induction hypothesis.

If α is a limit ordinal, then Theorem 7.2 and the induction hypothesis ensure
that we only need to prove that T/S is strongly convergent. In other words, since
T contracts a single redex u, we need to prove that u/S has a strongly convergent
complete development. Assume the contrary. Observe that the rewrite rule
employed in T must be collapsing, otherwise any development of u/S is strongly
convergent. As contracting residuals of u cannot create further nestings of
the residuals that are left, there exists a subterm of t with a hypercollapsing
reduction starting from it (obtained by a development of u/S), say at position
p. In fact, since no nestings are created, there must exist an infinite chain
of residuals of u at p. By strong convergence and limit ordinal length of S,
we can write S = S0;S1, where S0 has successor ordinal length and where
S1 : t∗ �

out t is a non-empty final segment of S performing no steps at prefix
positions of p. Hence, S0 has length strictly less than α and t∗|p �

out t|p. As
there is a hypercollapsing reduction starting from t|p, it follows by Definition 9.2
that there is also a hypercollapsing reduction starting from t∗|p. But then, by
Lemma 9.5, we have that t∗|p is hypercollapsing, which implies that t∗|p �

out t|p
is empty and that t∗|p = t|p. Thus, t∗|p contains a set of descendants of u having
no complete development (giving rise to the hypercollapsing reduction starting
from t∗|p = t|p), whence u/S0 has no complete development. Since S0 has length
strictly less than α, this contradicts the induction hypothesis. Hence, T/S is
strongly convergent.

Lemma 9.16. If s �
out t0 and s �

out t1, then there exist terms t∗0 and t∗1 such
that t0 �

out t∗0 and t1 �
out t∗1 with t∗0 ∼hc t

∗
1.

Proof. Let S : s �
out t0 and T : s �

out t1. By compression and Lemma 9.14
we may assume that both S and T have length at most ω. Suppose S has
length α ≤ ω and T has length β ≤ ω. The proof proceeds in four steps: In the
first step two ‘tiling diagrams’ are constructed, yielding respectively a reduction
starting in t0 and a reduction starting in t1. In the second step a relation is
established between the ‘tiles’ of the two diagrams. Employing the relation, it
is shown in the third step that the two reductions obtained in the first step are
strongly convergent. Finally, in the fourth step it is shown that the final terms
of the two strongly convergent reductions are equivalent modulo ∼hc.

Write S : s0,0 →out s1,0 →out · · · sγ,0 →out sγ+1,0 →out · · · sα,0 and T :
s0,0 →out s0,1 →out · · · s0,δ →out s0,δ+1 →out · · · s0,β and define s′γ,0 = sγ,0 for
all γ ≤ α. We inductively construct the ‘tiling diagram’ in Figure 7(a):

• the tiling of sγ,0 →out s′γ+1,0 and sγ,0 �
out sγ,β exists by Lemma 9.15;

• the reduction sγ+1,0 �
out sγ+1,β and the equivalences sγ+1,δ ∼hc s

′
γ+1,δ

for all 0 ≤ δ ≤ β exist by Lemma 9.14 and the existence of s′γ+1,0 � s′γ+1,β ;
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s0,0
out

out

s0,1 s0,δ
out s0,δ+1 s0,β s∗0,β

out

s′1,0 s′1,1

o
hc

s′1,δ

o
hc

s′1,δ+1

o
hc

s′1,β ∼hc

o
hc

s∗1,β

s1,0
out s1,1 s1,δ

out s1,δ+1 s1,β ∼hc s∗1,β

sγ,0
out

out

sγ,1 sγ,δ
out sγ,δ+1 sγ,β ∼hc s∗γ,β

out

s′γ+1,0 s′γ+1,1

o
hc

s′γ+1,δ

o
hc

s′γ+1,δ+1

o
hc

s′γ+1,β ∼hc

o
hc

s∗γ+1,β

sγ+1,0
out sγ+1,1 sγ+1,δ

out sγ+1,δ+1 sγ+1,β ∼hc s∗γ+1,β

(a)

t0,0

out

out t′0,1 t0,1

out

t0,δ

out

out t′0,δ+1 t0,δ+1

out

t1,0 t′1,1 ∼hc t1,1 t1,δ t′1,δ+1 ∼hc t1,δ+1

tγ,0

out

t′γ,1 ∼hc tγ,1

out

tγ,δ

out

t′γ,δ+1 ∼hc tγ,δ+1

out

tγ+1,0 t′γ+1,1 ∼hc tγ+1,1 tγ+1,δ t′γ+1,δ+1 ∼hc tγ+1,δ+1

tα,0 t′α,1

o
hc

∼hc tα,1

o
hc

tα,δ

o
hc

t′α,δ+1

o
hc

∼hc tα,δ+1

o
hc

t∗α,0
out t∗α,1 t∗α,1 t∗α,δ

out t∗α,δ+1 t∗α,δ+1

(b)

Figure 7: The ‘tiling diagrams’ from the proof of Lemma 9.16
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sγ,δ
out sγ,δ+1

tγ,δ

out

t′γ,δ+1 ∼hc tγ,δ+1

out

s′γ+1,δ s′γ+1,δ+1

o
hc

o
hc

sγ+1,δ
out sγ+1,δ+1

tγ+1,δ t′γ+1,δ+1 ∼hc tγ+1,δ+1

Figure 8: Superimposing the ‘tiles’ of the ‘tiling diagrams’ in Figure 7

• the reduction s∗γ,β �
out s∗γ+1,β and the equivalence s′γ+1,β ∼hc s∗γ+1,β

exist by Lemma 9.14 and the existence of sγ,β �
out s′γ+1,β ;

• the equivalence s∗γ+1,β ∼hc sγ+1,β exists by transitivity of ∼hc and since
sγ+1,β ∼hc s

′
γ+1,β and s′γ+1,β ∼hc s

∗
γ+1,β .

As can be seen in Figure 7(a), the construction yields a reduction S∗ starting
in t1 = s∗0,β such that all steps in the reduction occur outside hypercollapsing
subterms. Note that the constructed diagram is not a tiling diagram in the
strict sense of the word: No reduction occurs at the bottom and the diagram
consists not only of reductions but also of equivalences modulo hypercollapsing
subterms.

To obtain the second ‘tiling diagram’, depicted in Figure 7(b), we write
S : t0,0 →out t1,0 →out · · · tγ,0 →out tγ+1,0 →out · · · tα,0 and T : t0,0 →out

t0,1 →out · · · t0,δ →out t0,δ+1 →out · · · t0,β and define t′0,δ = t0,δ for all δ ≤ β.
The diagram is constructed by vertically repeating the horizontal construction
of Figure 7(a). The construction yields a reduction T ∗ : t0 = t∗α,0 �

out t∗α,1 �
out

· · · t∗α,δ �
out · · · .

Superimpose the tiles of the constructed ‘tiling diagrams’ as depicted in
Figure 8, i.e. sγ,δ and tγ′,δ′ are superimposed if γ = γ′ and δ = δ′. Define
s0,δ = s′0,δ, and tγ,0 = t′γ,0 for all γ ≤ α and δ ≤ β. By construction of the
‘tiling diagrams’, no term is superimposed on sγ,β with γ ≤ α in case β = ω
and similarly for tα,δ with δ < β in case α = ω.

We next prove for all superimposed terms sγ,δ and tγ,δ that sγ,δ ∼hc s
′
γ,δ ∼hc

tγ,δ ∼hc t
′
γ,δ. The proof is by induction on γ and δ. Induction is allowed because

sγ,δ and tγ,δ exist for all γ < α and δ < β:

• In case either γ = 0 or δ = 0, we defined sγ,δ = s′γ,δ = tγ,δ = t′γ,δ. Hence,
since ∼hc is an equivalence relation, sγ,δ ∼hc s

′
γ,δ ∼hc tγ,δ ∼hc t

′
γ,δ.

• In case of γ = γ′ + 1 and δ = δ′ + 1, we have by definition of the ‘tiling
diagrams’ that sγ,δ ∼hc s

′
γ,δ and tγ,δ ∼hc t

′
γ,δ. Hence, by transitivity of
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∼hc, we obtain the desired result if we can establish sγ,δ ∼hc t
′
γ,δ.

By Lemmas 9.15 and 9.14, as employed in the construction of the ‘tiling
diagrams’, sγ,δ′ �

out sγ,δ is essentially a development of residuals of the
redex u contracted in s0,δ′ →out s0,δ such that no residuals of u in sγ,δ

remain outside hypercollapsing subterms. Since we have by the induction
hypothesis that sγ,δ′ ∼hc tγ,δ′ and since every step in sγ,δ′ �

out sγ,δ

occurs outside hypercollapsing subterms, it follows by orthogonality and
fully-extendedness that there exists a reduction tγ,δ′ � t′′γ,δ such that

sγ,δ ∼hc t
′′
γ,δ. Since sγ,δ′ �

out sγ,δ is essentially a development of residuals
of u, it follows that tγ,δ′ � t′′γ,δ is development of residuals of u, i.e. of the
redex contracted in t0,δ′ → t′0,δ. Moreover, it follows that all residuals of
u left in t′′γ,δ occur inside hypercollapsing subterms. Hence, since we have
by Lemma 6.14 that t′′γ,δ � t′γ,δ, we also have that t′′γ,δ ∼hc t

′
γ,δ. But then,

by transitivity of ∼hc it follows that sγ,δ ∼hc t
′
γ,δ, as required.

Employing that sγ,δ ∼hc s
′
γ,δ ∼hc tγ,δ ∼hc t

′
γ,δ holds for all superimposed

sγ,δ and tγ,δ, we next prove that the reduction S∗ : s∗0,β �
out s∗1,β �

out

· · · s∗γ,β �
out · · · in Figure 7(a) is strongly convergent. The proof is by con-

tradiction. Thus, suppose S∗ is not strongly convergent. There now exists a
position p of minimal depth d such that an infinite number of reductions occur
at p. As each step in S∗ occurs outside hypercollapsing subterms, it follows by
minimality of d that from some γ onwards no redexes are contracted above p
and that all redexes contracted at p are non-collapsing. Moreover, by strong
convergence of sγ,0 � sγ,β , there exist a δ such that all steps in sγ,δ � sγ,β also
occur below d.

Suppose for some minimal κ ≥ γ that a redex is contracted at some position
q < p in either sκ,δ ⇒ s′κ+1,δ or sκ,δ � sκ,β . By dependence of the depth of the
steps in sκ,δ � sκ,β on the depth of the steps in sλ,δ � sλ,β for all γ ≤ λ < κ,
it follows by minimality of κ that the reduction must be sκ,δ ⇒ s′κ+1,δ. This
implies that a redex is also contracted at position q in sκ,β ⇒ s′κ+1,β . Since

the redex is by definition not contracted in s∗κ,β �
out s∗κ+1,β , it follows that the

subterm at position q in s∗κ,β is hypercollapsing. However, as q < p, this implies
that the infinite number of redexes contracted at position p cannot occur, as
redexes in S∗ are contracted outside hypercollapsing subterms. Hence, for all
κ ≥ γ we have that no reduction sκ,δ ⇒ s′κ+1,δ or sκ,δ � sκ,β contracts a redex
at strict prefix position of p.

Since all steps in sγ,δ � sγ,β occur below d, the previous implies that if
a redex is contracted at position p in some s∗κ,β �

out s∗κ+1,β for minimal κ ≥
γ, then a redex is also contracted at position p in sκ,δ ⇒ s′κ+1,δ. Since the
contracted redex is non-collapsing, it follows that the function symbol that
occurs at position p in both s∗κ+1,β and s′κ+1,δ is the root symbol of the next
redex contracted at position p. Hence, sγ,δ ⇒ s′γ+1,δ ∼hc sγ+1,δ ⇒ s′γ+2,δ ∼hc

sγ+2,δ ⇒ · · · contains an infinite number of steps at position p without any
interleaving of collapsing steps at that position. However, as redexes contracted
at position p cannot occur inside hypercollapsing subterms by definition of S∗,
we have that t0,δ � tα,δ also contracts an infinite number of redexes at position
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p, which is impossible by strong convergence of this reduction, contradiction.
Hence, S∗ is strongly convergent.

By a similar argument as above it follows that the reduction T ∗ : t∗α,0 �
out

t∗α,1 �
out · · · t∗α,δ �

out · · · is strongly convergent. Hence, since sγ,δ ∼hc

s′γ,δ ∼hc tγ,δ ∼hc t′γ,δ for all γ and δ in both ‘tiling diagrams’, the desired
result follows by strong convergence.

We can now — finally — prove the main result of the section: confluence
modulo ∼hc.

Theorem 9.17. Fully-extended, orthogonal iCRSs are confluent modulo ∼hc.

Proof. Let s ∼hc t, and assume that s � s′ and t � t′. Consider the following
diagram:

s ∼hc

(1)

t

out out

t

(2)

s′ ∼hc

out (4)

t′0

out (3)

t′1 ∼hc

out

t′

out(5)

s′′ ∼hc t∗0 ∼hc t∗1 ∼hc t′′

In the diagram, (1) and (2) exist by Lemma 9.14 and (3) exists by Lemma 9.16.
Moreover, (4) and (5) also exist by Lemma 9.14. The result now follows by the
diagram and transitivity of ∼hc.

9.3 Almost Non-Collapsingness

We would like a characterisation of confluence that appeals only to the syntax
of iCRSs without any need to consider equality modulo some relation. The first
correct, fundamental confluence result for iTRSs [18] stated that an orthogonal
iTRSs is confluent iff it has the property of being ‘almost non-collapsing’: There
is at most one rule that is collapsing and the variable at the root of the right-
hand side of that rule is the only variable occurring in the left-hand side of that
rule.

Unfortunately, this concept does not carry over trivially to iCRSs, when
replacing the variables from iTRSs by meta-variables:

Example 9.18. Consider the following rewrite rule, which is almost non-collaps-
ing in the above sense:

f([x]Z(x)) → Z(f([x]Z(x)) .

The term f([x]f([y]x)) gives rise to the finite reduction

f([x]f([y]x)) → f([x]x) ,
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the final term of which reduces only to itself. However, the following reduction
of length ω also exists:

f([x]f([y]x)) → f([y]f([x]f([y]x))) → f([y]f([y]f([x]f([y]x)))) → · · · s ,

where s is solution of the recursive equation s = f([y]s), which is again a term
which only reduces to itself. Hence, f([x]f([y]x)) reduces to two different terms
that only reduce to themselves. In other words, the considered ‘almost non-
collapsing’ rewrite rule defines a non-confluent iCRS.

We currently do not know how to give a precise characterisation of the
class of confluent iCRSs. From the above example, it is clear that almost non-
collapsingness alone does not suffice. It is plausible that the criterion for con-
fluence will be undecidable, even for the class of iCRSs containing only a finite
number of rules, all of which have finite right-hand-sides. The above example
bears witness of this: It crucially depends on the redex f([x]x) being reachable
from itself and reachability is of course in general undecidable.

10 Normal Forms and Normalisation

In this section we consider normal forms of iCRSs:

Definition 10.1. A term in an iCRS is a normal form if no redexes occur in
the term.

In Section 10.1 we consider several properties of normal forms. Thereafter,
in Sections 10.2, 10.3, and 10.4 we resume to consider fully-extended, orthogonal
iCRSs when we apply the technique of essentiality in the context in which it was
originally conceived: that of normalising reduction strategies. The considered
reduction strategies are all ‘fair’ reductions. We consider outermost-fair reduc-
tions, fair reductions, and needed-fair reductions. These reductions all satisfy
the following definition:

Definition 10.2. Let P be a predicate. A P-fair reduction is a weakly contin-
uous reduction (sβ)β<α where for every β < α and redex u in sβ satisfying P
there exists a β ≤ γ < β + ω such that either

1. sγ → sγ+1 contracts a residual of u satisfying P, or

2. no residual of u in sγ satisfies P.

Thus, each redex that satisfies P is either reduced after a finite number of
steps or it no longer satisfies P after a finite number of steps.

Example 10.3. Given that a redex at a position p is called outermost if no redex
occurs at a strict prefix position of p, we can define outermost-fair reductions
by defining a predicate for redexes that is true in case the redex is outermost
and false otherwise. Consider the following two rewrite rules:

f(Z) → g(Z)

a→ g(a)
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Next, consider the reduction

f(a) → f(g(a)) → · · · → f(gn(a)) → gn+1(a) → · · · gω

and
f(a) → f(g(a)) → · · · → f(gn(a)) → · · · → f(gω) → gω .

The first of these reductions is outermost-fair, as a residual of each redex present
in each term is reduced after a finite number of steps. The second reduction is
not outermost-fair, as a residual of a redex that occurs at the root of f(a) is
only contracted after ω steps and as a redex occurring at the root of a term is
always outermost.

10.1 Normal Form Properties

The following properties relate the normal forms of an iCRS and its rewrite
relation. The properties extend their usual finitary counterparts to infinitary
rewriting. Ample motivation for the formulation of the properties can be found
in [18].

Definition 10.4. Define the following:

• An iCRS has the normal form property (NF) if s (�·�)∗ t with t a normal
form implies s � t, where (�·�)∗ denotes the symmetric, transitive,
reflexive closure of �.

• An iCRS has the unique normal form property (UN) if s (�·�)∗ t with
s and t normal forms implies s = t.

• An iCRS has the unique normal form property with respect to reduction
(UN→) if t � s � t′ with t and t′ normal forms implies t = t′.

By the definitions we immediately have:

Proposition 10.5. It holds that NF implies UN and that UN implies UN→.

The reverse implications of those above do not hold. This can be witnessed
by the rewrite systems depicted in Figure 9.

In Figure 9(a) a counterexample occurs refuting that UN implies NF: Since
b is the only normal form, next to all variables, UN is immediate. However, NF
does not hold, as there is no reduction c � b. The rewrite system in Figure
9(b) refutes that UN→ implies UN: Since b1 is the only normal form of a1 with
respect to reduction and since b2 the only normal form of a2, UN→ is immediate.
However, UN does not hold, as we have b1 (�·�)∗ b2, while b1 6= b2.

The following lemma relates confluence modulo hypercollapsing subterms
with the three properties introduced above.

Lemma 10.6. If an iCRS is confluent modulo hypercollapsing subterms, then
NF, UN, and UN→ hold.
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a c

b

(a)

a1 c a2

b1 b2

(b)

Figure 9: Counterexamples to the reverse of Proposition 10.5

Proof. Let s (�·�)∗ t with t a normal form. By induction on the number of
changes in the direction of the rewrite relation in s (�·�)∗ t and confluence
modulo hypercollapsing subterms it follows that s reduces to a term t′ such that
t ∼hc t

′. As no hypercollapsing subterms occur in normal forms, we have t = t′.
Hence, NF holds and UN and UN→ follow by Proposition 10.5.

In the above proof confluence is easily substituted for confluence modulo
hypercollapsing subterms, yielding the traditional result from finitary rewriting
stating that confluence implies NF, UN, and UN→. Moreover, as fully-extended,
orthogonal iCRSs are confluent modulo hypercollapsing subterms by Theorem
9.17, the above lemma also gives an affirmative answer to the conjecture posed
in [23] stating that fully-extended, orthogonal iCRSs satisfy UN→.

It is not the case that NF implies confluence modulo hypercollapsing sub-
terms. To see this, consider the following four rewrite rules:

a→ f(b) b→ b

a→ g(c) c→ c

No term in which a redex occurs has a normal form. Hence, NF is immedi-
ate. However, confluence modulo hypercollapsing subterms does not hold, as
a reduces to f(b) and g(c), both of which only reduce to themselves, and as
f(b) 6∼hc g(c).

10.2 Outermost-Fair Reductions

We desire a method to obtain normal forms in infinitary rewriting. The standard
way of obtaining normal forms in (finitary) higher-order rewriting is by using
an outermost-fair strategy [30, 39, 38].

Definition 10.7. Let s be a term. A redex at a position p in s is outermost if
no redex in s occurs at a strict prefix position of p. An outermost-fair reduction
is a P-fair reduction such that P is true for a redex iff the redex is outermost.

Hence, a reduction is outermost-fair if, after a finite number of steps, every
outermost redex is either reduced or is not outermost anymore.

Lemma 10.8. Let s be a term and T an outermost-fair reduction of length at
least ω starting in s. If there is a reduction s � t with t a normal form, then T
is strongly convergent of length ω with limit t.

59



Proof. By compression, we may assume that s � t has length at most ω. More-
over, by strong convergence we may write s � t as:

s→∗ s1 →∗ · · · →∗ sd →∗ · · · t ,

where all steps in sd � t occur below depth d. For each depth d > 0 and
Dd : s→∗ sd, we have by definition that sd mirrors t in Pd, where Pd is the set
of positions in t above depth d. Moreover, no redexes occur in sd at positions in
Pd and, as s→∗ sd is finite, we can view Dd to be a finite sequence of complete
developments, where each development consists of a single step. Hence, µPd

(Dd)
as defined in Section 8 exists.

Let the depth d > 0 be arbitrary and denote the first ω steps of T by
Tω. Iteratively, take the emaciated projection of Dd over this initial sequence.
By Lemmas 8.15 and 8.16 and well-foundedness of ≺, only a finite number of
steps of Tω are essential for Pd. Following the finite number of essential steps,
there are two possibilities for the emaciated projection of Dd: Either all the
developments in the projection are empty, or not.

• In case all the developments are empty it follows by Lemma 8.15 that all
remaining terms along Tω mirror sd and t in Pd and that no redexes are
contracted above depth d.

• In case not all the developments are empty, it follows by Lemma 8.15 that
exists a fixed set of essential positions P such that all the remaining terms
along Tω mirror each other in P . Moreover, the lemma together with non-
emptiness implies that a redex u occurs at a fixed position in P . Since the
depth of u is finite, only a finite number of redexes can be created above u
in the remaining part of Tω. These redexes cannot be contracted or cease
to exist by orthogonality and since all further contracted redexes occur at
positions not in P , again by Lemma 8.15. Hence, after a finite number of
further steps a redex must be created that is outermost for the remainder
of Tω, contradicting outermost-fairness. Thus, the emaciated projection
of Dd must become empty after a finite number of steps.

As the previous holds for all depths d > 0 we have that Tω is strongly
convergent with limit t. Hence, T = Tω and the result follows.

We thus obtain a strong result concerning normalisation of iCRSs:

Theorem 10.9. If s can be reduced to normal form by a strongly convergent
reduction, then it also reduces to a normal form by any outermost-fair reduction.
Any such reduction is strongly convergent and of length at most ω.

Proof. If T is a finite outermost-fair reduction starting in s and T reaches a
normal form, then we are done. If T is finite but has not reached a normal
form, then there is at least one outermost redex in the final term of T , and we
may thus extend it. Hence, we only need to prove that if S is infinite, that S
is also strongly convergent of length ω and reaches a normal form. This is the
contents of Lemma 10.8.
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10.3 Fair Reductions

Contrary to the predicate considered in the previous section, which is only
satisfied under certain conditions, this section considers a predicate that will
always be satisfied.

Definition 10.10. A fair reduction is a P-fair reduction such that P is always
true.

As the predicate is always true, the second clause of Definition 10.2 cannot
occur in a fair reduction unless the first clause applies earlier on in the considered
reduction.

We have the following:

Theorem 10.11. If s can be reduced to a normal form by a strongly convergent
reduction, then it also reduces to a normal form by any fair reduction. Any such
reduction is strongly convergent and of length at most ω.

Proof. Since a fair reduction is in particular fair with respect to outermost
redexes, the result follows by Theorem 10.9.

Hence, by the proof it follows that each fair reduction is an outermost-fair
reduction. This implies that the predicate that is always true strengthens the
predicate used for outermost-fair reductions, leading to a weaker result than the
one obtained in the previous section.

10.4 Needed-Fair Reductions

In this section we show that needed-fair reductions are normalising.

Definition 10.12. Let s be a term. A redex u in s is needed if along every
strongly convergent reduction from s to a normal form some residual of u is
contracted. A needed-fair reduction is a P-fair reduction such that P is true for
a redex iff the redex is needed.

By definition of neededness, the second clause of Definition 10.2 cannot
occur in a needed-fair reduction unless the first clause applies earlier on in the
considered reduction.

Example 10.13. Consider the rewrite rules and reductions in Example 10.3. The
first of the reductions is needed-fair, as each redex along the reduction is reduced
after a finite number of steps. The second reduction is not needed-fair, as the
redex at the root of f(a) is only reduced after ω steps and as the redex at the
root of a term is by definition needed.

To prove the normalisation of needed-fair reductions, we establish a rela-
tion between essential redexes and needed redexes. To this end we first relate
the essential redexes along different complete developments of the same set of
redexes:
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Lemma 10.14. Let s and t be terms, U a set of redexes of s such that s⇒U t,
and P a prefix of t. If s ⇒V1 t′ ⇒V2 t with V1 ⊆ U and V2 = U/(s ⇒ t′), then
the set of positions essential for P in s is identical along s⇒ t and s⇒ t′ ⇒ t.

Proof. By Lemma 6.11, U satisfies the finite jumps property. Hence, since s⇒ t
and s ⇒ s′ ⇒ t are both complete developments of U , we have by Theorem
6.10 that the set of descendants in t of a position in s is identical along both
developments. Hence, by Proposition 8.8 it follows for any position in s with
a descendant in P that the position is essential irrespective of the development
being either s⇒ t or s⇒ s′ ⇒ t, where the proposition is applied twice in case
of the latter development. This leaves to prove that the same holds for positions
in redex patterns of redexes in U .

Consider a fresh unary function symbol k and replace each subterm s′ of
s with a redex from U occurring at the root by k(s′). This yields a term
sk. Since the unary function symbol k does not occur in any of the rewrite
rules of the assumed iCRS, it is easily shown for each (not necessarily complete)
development starting in s that there exists a corresponding development starting
in sk, where the set of redexes is adapted appropriately and such that removal of
all function symbols k yields the original development. Hence, the completeness
of a development starting in s implies the completeness of the corresponding
development starting in sk.

Suppose that sk ⇒ tk is the complete development that corresponds to
s⇒ t. Define the prefix P k of tk in such a way that the removal of the function
symbols k from tk and the corresponding elements from the positions in P k

yields P and such that for any position p ∈ P k that is not the prefix of any
another position in P k it holds that root(tk|p) 6= k. By definition of P k and
the definition of essentiality we immediately have that a redex in U is essential
if the function symbol k directly preceding it in sk is. Hence, by looking at
the function symbols k occurring in sk, the result now follows for the positions
in the redex patterns of the redexes in U in similar fashion as for all other
positions.

By the previous lemma we also have the following:

Corollary 10.15. Let s and t be terms, U a set of redexes of s such that s⇒U t,
and P a prefix of t. If it holds that:

• s⇒V1 s′ ⇒V2 t with V1 ⊆ U and V2 = U/(s⇒ s′), and

• s⇒V′

1 t′ ⇒V′

2 t with V ′
1 ⊆ U and V ′

2 = U/(s⇒ t′),

then the set of positions essential for P in s is identical along both s ⇒ s′ ⇒ t
and s⇒ t′ ⇒ t.

We next show that each essential redex has an essential residual as long as
it is not contracted and that inessential redexes only have inessential residu-
als. Moreover, we show that the same holds in case emaciated projections are
considered.

62



Lemma 10.16. Let D : s0 ⇒U1 s1 ⇒U2 · · · ⇒Un sn, with Ui finite for all
1 ≤ i ≤ n, and let P be a prefix of sn. If s0 → t0 contracts a redex u such that
no redex in u/D occurs at a position in P , then for every redex v in s0:

• if v is essential, then it is either u or there exists a residual in t0 that is
essential, and

• if v is inessential, then all residuals in t0 are inessential.

Proof. Consider the following diagram:

s0
U1

u

s1
U2

· ·
Un sn

t0
V1

t1
V2

· ·
Vn

tn

where the reduction at the bottom is D/u. Since no redex in u/D occurs at
a position in P , we have that tn mirrors sn in P . Hence, we can consider the
redexes in t0 essential for P . By repeated application of the Corollary 10.15
to the tiles of the diagram and by Proposition 8.8, it follows for all 1 ≤ i ≤ n
that any redex in Ui that is not a residual of u has an essential residual in Vi in
case it is essential and has no such residual in case it is inessential. Hence, by
definition of essential redexes, every residual in t0 of a redex in s0 satisfies the
required properties.

Lemma 10.17. Let D : s0 ⇒U1 s1 ⇒U2 · · · ⇒Un sn, with Ui finite for all
1 ≤ i ≤ n, and let P be a prefix of sn. If s0 → t0 contracts a redex u such that
no redex in u/D occurs at a position in P , then for every redex v in s0:

• if v is essential, then it is either u or there exists an essential redex in the
first term of D�u with the redex pattern and position identical to that of
a residual of v in t0, and

• if v is inessential, then all redexes in the first term of D�u with the redex
pattern and position identical to that of a residual of v in t0 are inessential.

Proof. Immediate by the previous lemma and the definition of D�u.

We are now in a position to relate essential redexes and needed redexes.

Lemma 10.18. Let s0 →∗ s1 →∗ · · · →∗ sd →∗ · · · t be a reduction of length at
most ω with t a normal form such that, for all d ∈ N, the steps in sd � t occur
below depth d and Pd is the set of positions in sd above depth d. If a redex in s
is essential for some Pd in s with d ∈ N, then it is needed.

Proof. Let u be a redex in s that is essential for some prefix Pd. Moreover,
suppose u is not needed. By definition of neededness there exists a reduction T
to normal form not contracting any residual of u. We show by ordinal induction
that a residual of u occurs in every term tα along T . To facilitate the induction
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we also show for all β ≤ α that each tβ reduces to a term that mirrors sd in Pd by
a finite sequence of complete developments Dβ such that µPd

(Dα) � µPd
(Dβ)

and such that sα mirrors sβ in the positions of sβ essential for Pd in case
µPd

(Dα) = µPd
(Dβ).

For t0 = s0 the result is immediate by assumption. Since s0 →∗ sd consists
of a finite number of steps it is also a finite sequence of complete developments,
where each development consists of a single step.

For tα+1, discriminate between the contracted redex, say v, being either
essential or inessential. If v is essential, the result follows by Lemmas 8.16
and 10.17 and the induction hypothesis. If v is inessential, the result follows by
Lemmas 8.15 and 10.17 and the induction hypothesis. In both cases the lemmas
may be applied since v is not a residual of u by assumption of T and since all
redexes occur below depth d in sd and, hence, the same holds for the final term
of Dα.

For sα with α a limit ordinal, it follows by the well-foundedness of ≺ that
there exist a β < α such that for every β < γ < α we have µPd

(Dγ) = µPd
(Dβ).

Hence, by the induction hypothesis it follows for all β < γ < α that sγ mirrors
sβ in the positions of sβ essential for Pd and, by strong convergence, sα mirrors
sβ in these positions. By Lemma 8.13 there exists a finite sequence of complete
developments D′

β starting in sβ contracting only essential redexes such that the
final term of D′

β mirrors sd in Pd. The result now follows by the induction
hypothesis and Lemma 8.17 applied to D′

β .
Hence, a residual of u occurs in the final term of T , contradicting the fact

that the final term is in normal form. Concluding, we have that every redex
that is essential for some Pd is needed.

Lemma 10.19. Let s0 →∗ s1 →∗ · · · →∗ sd →∗ · · · t be a reduction of length at
most ω with t a normal form such that, for all d ∈ N, the steps in sd � t occur
below depth d and Pd is the set of positions in sd above depth d. If a redex in s
is needed, then there exists a d ∈ N such that the redex is essential for Pd in s.

Proof. Consider a reduction S that contracts for increasingly larger d ∈ N all
redexes essential for Pd until such redexes no longer occur. By Lemmas 8.15
and 8.16 and the well-foundedness of ≺ it follows that S is a strongly convergent
reduction of length at most ω to the normal form t. Hence, given the existence
of S and Lemma 10.17, a redex can only be needed in s if there exists some
d ∈ N such that the redex is essential for Pd in s.

Lemma 10.20. Let s0 →∗ s1 →∗ · · · →∗ sd →∗ · · · t be a reduction of length at
most ω with t a normal form such that, for all d ∈ N, the steps in sd � t occur
below depth d and Pd is the set of positions in sd above depth d. A redex in s is
needed iff there exists a d ∈ N such that the redex is essential for Pd in s.

Proof. Immediate by Lemmas 10.18 and 10.19.

Finally, we can prove the main theorem of this section:
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Theorem 10.21. If s can be reduced to a normal form by a strongly convergent
reduction, then it also reduces to a normal form by any needed-fair reduction.
Any such reduction is strongly convergent and of length at most ω.

Proof. By compression, we may assume we have a reduction s � t to normal
form of length at most length ω. Write the reduction as

s = s0 →∗ s1 →∗ · · · →∗ sd →∗ · · · t

with all steps in sd � t occurring below depth d and denote by Pd the set of
positions in sd above depth d. Iteratively, consider the emaciated projection
of a reduction s →∗ sd with respect to the prefix Pd. All redexes occurring
at positions essential for Pd in the terms along the needed-fair reduction are
essential, as no redexes occur in sd at positions in Pd. Hence, it follows by
Lemma 10.20 and the needed-fair condition that an essential redex is contracted
after a finite number of steps as long as there are any essential redexes left (by
Lemma 8.15 a prefix stays untouched as long as only inessential redexes are
contracted). As ≺ is well-founded, we have by Lemmas 8.15 and 8.16 that
the needed-fair reduction reduces s to a term that mirrors sd in Pd in a finite
number of steps. Since the previous holds for any sd and Pd, it follows that any
needed-fair reduction is strongly convergent and of length at most ω.

11 Conclusion and Suggestions for Future Work

This paper has introduced and developed the theory of infinitary Combinatory
Reduction Systems, thus providing the first true extension of infinitary rewriting
to the higher-order setting. We have proven a number of results showing that
many of the positive results from the ordinary (non-infinitary) setting can be
lifted to infinitary systems; particularly useful results concern confluence and
normalisation.

While the results of this paper generalise most known results in the field
of infinitary rewriting, a number of important questions remain. We urge our
readers to treat these at their leisure; an unprioritised list of open questions
remaining is the following.

• Does there exist a notion of meaningless terms [19] that allows for the
construction of Böhm-like trees?

• Can the treatment of iCRSs in this paper be extended to the other formats
of higher-order rewriting? The fact that CRSs have a clean separation of
abstractions (in terms and rewrite rules) and substitutions which is not
present in some of the other forms of higher-order rewriting [40] may
constitute a stumbling block in this respect.

• Does our proof of Theorem 5.2 construct compressed reductions Lévy-
equivalent to the original ones. If not, is it possible to do so?
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• Can a large subclass of higher-order iCRSs be identified for which a gen-
eralisation of the first-order result that almost-non-collapsing systems are
confluent holds? As we show in Section 9.3, a generalisation is not likely
to be easy to come by.

• The current proof of confluence modulo hypercollapsing subterms requires
both fully-extendedness and orthogonality. Is it possible to drop the the
requirement of fully-extendedness or replace orthogonality by weak orthog-
onality? Dropping fully-extendedness highly likely requires completely
different proof techniques, since the assumption that reductions can be
compressed to length at most ω is firmly embedded in the current essen-
tiality approach. It ensures that the employed measure is well-founded.

• Apart from the obvious modelling of infinitary formulae and equations
using terms and rules, do our results have any impact on infinitary (higher-
order) logic with quantifiers [26]?

We hope that our readers will endeavour to answer the above and that the
array of positive theorems in this paper will lead to further use of infinitary
rewriting in the modelling of lazy data structures and lazy (declarative) lan-
guages.
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A Proof of Proposition 6.6 and Lemma 6.7

As in Section 6, we assume in this appendix that we are working in an orthogonal
iCRS and that U is a set of redexes in a term s. We first prove Proposition 6.6.

Proof of Proposition 6.6. As each path projection derives from a path, we have
by definition that φ is surjective. Similar for the path projections in P(s,U) and
the maximal paths, as each path projection in P(s,U) derives from a maximal
path.

To prove that φ is injective, suppose there exist (maximal) paths Π,Π′ such
that φ(Π) = φ(Π′). By definition of φ both paths and the path projection
consist of the same number of nodes and edges. Let Π∗ be the longest shared
prefix of Π and Π′. The prefix Π∗ is non-empty, as any path of s starts with
(s, ε). There are now two cases to consider depending on Π∗ ending in either an
edge or a node.

In case Π∗ ends in an edge, the next node is uniquely determined by the
definition of paths. Hence, as Π and Π′ have the same number of nodes and
edges we can extend Π∗ with that unique node, contradiction.

In case Π∗ ends in a node, both paths extend Π∗, otherwise Π = Π′ or the
paths differ in the number of nodes or edges. In case the extension is with an
unlabelled edge in case of one of the paths, the other path must also extend Π∗

with an unlabelled edge. This follows by the definition of paths. In case the
extension is with an edge labelled i, the other path must also extend Π∗ with
an edge labelled i. This follows by definition of paths and by φ(Π) = φ(Π′).
Hence, in case Π∗ ends in a node a contradiction also follows. We can conclude
that φ is an injection both between paths and path projections and between
maximal paths and the path projections in P(s,U).

To prove Lemma 6.7, we define a map θu taking maximal paths Π of s with
respect to U to maximal paths of t with respect to U/u, where u ∈ U and s→ t
by contracting u. The definition of θu(Π) employs a partial map ψ that has
three arguments: a node of Π, a finite string over N, and a partial map from
U − {u} to finite strings over N.

We first define ψ. In the definition, given a partial map ρ, we denote by
ρ[x 7→ y] the partial map ρ′ defined as:

ρ′(z) =

{

y if z = x

ρ(z) otherwise

Definition A.1. Let Π be a maximal path of s with respect to U , let u ∈ U ,
and let s→ t by contracting u. Define ψ(n, qt, ρ) as:

1. If n is labelled (s, p) with the subterm at p not a redex in U , then

(a) if n has no outgoing edge define ψ(n, qt, ρ) = (t, qt),

(b) if n has an edge labelled i to n′ define ψ(n, qt, ρ) = (t, qt)
i
→ ψ(n′, qt ·

i, ρ).
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2. If n is labelled (s, pv) with v ∈ U −{u} and if n has an unlabelled edge to
n′, then define ψ(n, qt, ρ) = (t, qt) → ψ(n′, qt, ρ[v 7→ qt]),

3. If n is labelled (s, pu) and if n has an unlabelled edge to n′, then define
ψ(n, qt, ρ) = ψ(n′, qt, ρ).

4. If n is labelled (s, p) with s|p a variable bound by v ∈ U −{u} and if n has
an unlabelled edge to n′, then define ψ(n, qt, ρ) = (t, qt) → ψ(n′, ρ(v), ρ).

5. If n is labelled (s, p) with s|p a variable bound by u and if n has an
unlabelled edge to n′, then define ψ(n, qt, ρ) = ψ(n′, qt, ρ).

6. If n is labelled (r, p, pv) with r|p not a meta-variable and v ∈ U − {u},
then

(a) if n has no outgoing edge define ψ(n, qt, ρ) = (r, p, qt),

(b) if n has an edge labelled i to n′ define ψ(n, qt, ρ) = (r, p, qt)
i
→

ψ(n′, qt, ρ).

7. If n is labelled (r, p, pu) with r|p not a meta-variable, then

(a) if n has no outgoing edge define ψ(n, qt, ρ) = (t, qt),

(b) if n has an edge labelled i to n′ define ψ(n, qt, ρ) = (t, qt)
i
→ ψ(n′, qt ·

i, ρ).

8. If n is labelled (r, p, pv) with r|p a meta-variable and v ∈ U − {u} and if
n has an unlabelled edge to n′, which is labelled (s, pv · q), then define
ψ(n, qt, ρ) = (r, p, qt) → ψ(n′, qt · q, ρ).

9. If n is labelled (r, p, pu) with r|p a meta-variable and if n has an unlabelled
edge to n′, which is labelled (s, pu ·q), then define ψ(n, qt, ρ) = ψ(n′, qt, ρ).

Let ⊥ be completely undefined map. We define the following.

Definition A.2. Let u ∈ U and let Π be a maximal path of s with respect to
U . The map θu is defined as:

θu(Π) = ψ((s, ε), ε,⊥) .

Note that θu(Π) is calculated by iteration of ψ. After a finite number of
iterations, a finite prefix of θu(Π) is obtained.

We next show that that θu is well-defined: θu(Π) is a maximal path of t with
respect to U/u.

Proposition A.3. Let Π be a maximal path of s with respect to U and let
u ∈ U . For each finite number of iterations of ψ in the calculation of θu(Π) the
following holds:

• Either no nodes and edges have been generated, or the generated nodes and
edges, with exception of the edge generated last, form a path, and the edge
generated last is a valid one when extending the path to a longer one.
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• For all defined ρ(v) in the third argument of ψ it holds that ρ(v) ∈ Pos(t)
and that a residual of v occurs at ρ(v) in t.

Distinguishing on the particular clause of Definition A.1 employed in the last
iteration, the following also holds:

(1) (a) nothing; (b) qt is descendant of p and the next node generated is (t, qt ·
i), which together with the previously generated nodes and edges forms a
path;

(2) a residual of v occurs at qt in t and the next node generated is (r, ε, qt),
which together with the previously generated nodes and edges forms a path;

(3) qt = pu and the next node generated is (t, qt), which together with the
previously generated nodes and edges forms a path;

(4) if n′ is labelled (r, p′ · i, pv), then the next node generated is (r, p′ · i, ρ(v)),
which together with the previously generated nodes and edges forms a path;

(5) there are two subcases:

– if the previous iterations employ clause (3) followed by a number of
iterations employing in turn clauses (5) and (9), then qt = pu;

– if the previous iteration employs clause (1) or if the previous itera-
tions employ clause (7) followed by a number of iterations employing
in turn clauses (5) and (9), then qt = q′t · i where q′t is the qt from
either clause (1) or (7);

in both cases the next node generated is (t, qt), which together with the
previously generated nodes and edges forms a path.

(6) (a) nothing; (b) a residual of v occurs at qt and the next node generated is
(r, p · i, qt), which together with the previously generated nodes and edges
forms a path;

(7) (a) nothing; (b) qt = pu · q where q is a descendant of p across a complete
development of the parallel β-redexes in rσ, with rσ as defined above Def-
inition 4.14, and the next node generated is (t, qt · i), which together with
the previously generated nodes and edges forms a path;

(8) qt is a descendant of pv and the next node generated is (t, qt · q), which
together with the previously generated nodes and edges forms a path;

(9) there are two subcases:

– if the next iteration does not employ clause (5), then qt is a descen-
dant of pu · q;

– otherwise, qt is as in clause (5);

in both cases the next node generated is (t, qt), which together with the
previously generated nodes and edges forms a path.
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In addition, if Π is a maximal path of s with respect to U , then θu(t) is a maximal
path of t with respect to U/u.

Proof. Let Π be a maximal path of s with respect to U , let u ∈ U , and let s→ t
by contracting u. We prove the lemma by induction on the number of iterations
of ψ.

Below, when we say that something is a path of t, we implicitly assume that
it is a path of t with respect to U/u.

Base case. By definition of ψ we have that only clauses (1), (2), and (3)
can be employed in the first iteration. The other clauses either require a bound
variable at the root of s, which is impossible, or they require the label of the
node in the first argument to be a triple, which is not the case. We deal with
each of the possible clauses in turn:

(1) In this case a node labelled (t, ε) is generated and possibly an edge labelled
i. Obviously, (t, ε) is a path. The partial map ⊥ is unaffected by this
clause, thus satisfying the necessary requirements.

As the current iteration implies that no redex from U occurs at the root
of s, we have that qt = ε ∈ Pos(t) is a descendant of p = ε and root(t|ε) =
root(s|ε). Hence, in case of clause (a), the path is maximal like Π. In case
of clause (b), the edge labelled i is allowed and the next node generated
node must be (t, i). This node forms a path together with (t, ε) and the
edge labelled i. By construction of paths, the finite prefix of Π considered
thus far is not maximal and there is nothing more to show.

(2) In this case a node labelled (t, ε) and an unlabelled edge are generated.
Obviously, (t, ε) is a path. As orthogonality is assumed, a redex v′, which
is a residual of v, occurs at ε ∈ Pos(t). Hence, ⊥[v 7→ ε] satisfies the
necessary requirements.

As v ∈ U − {u}, it holds that v′ ∈ U/u. Hence, the unlabelled edge
is allowed, and the next node generated must be (r, ε, ε), where r is the
right-hand side of the rewrite rule employed in v′. This node forms a path
together with (t, ε) and the unlabelled edge. By construction of paths, the
finite prefix of Π considered thus far is not maximal and there is nothing
more to show.

(3) Obviously, ⊥ is unaffected by this clause, thus satisfying the necessary
requirements. Moreover, qt = ε ∈ Pos(t) is equal to p = ε, and by
definition of ψ the next generated node must be (t, ε), which is a path.
By construction of paths, the finite prefix of Π considered thus far is not
maximal and there is nothing more to show.

Induction step. Assume we have proved the lemma up to some arbitrary
number of iterations. We next prove that it also holds in case of one more
iteration. We deal with each of the possible clauses in turn:
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(1) In this case the only possible clauses employed in the previous iteration
are (1), (8), and (9). All other clauses force the label of the node in the
first argument of ψ to be a triple, which is not the case.

A node labelled (t, qt) is generated and possibly an edge labelled i. By the
clauses possible in the previous iteration, (t, qt) forms a path together with
the previously generated nodes and edges. The partial map ρ is unaffected
by this clause, thus satisfying the necessary requirements.

Also by the clauses possible in the previous iteration, qt ∈ Pos(t) is a
descendant of p and root(t|qt

) = root(s|p). Hence, in case of clause (a),
the path is maximal like Π. In case of clause (b), the edge labelled i is
allowed and the next node generated must be (t, qt · i). This node forms a
path together with previously generated nodes and edges. By construction
of paths, the finite prefix of Π considered thus far is not maximal and there
is nothing more to show.

(2) As before, the only possible clauses employed in the previous iteration are
(1), (8), and (9). All other clauses force the label of the node in the first
argument of ψ to be a triple, which is not the case.

A node labelled (t, qt) and an unlabelled edge are generated. By the
clauses possible in the previous iteration, (t, qt) forms a path together with
the previously generated nodes and edges. Moreover, as orthogonality is
assumed, a redex v′, which is a residual of v, occurs at qt ∈ Pos(t). Hence,
as ρ satisfies the necessary requirements, ρ[v 7→ qt] does so too.

As v ∈ U − {u}, it holds that v′ ∈ U/u. Hence, the unlabelled edge is
allowed, and the next node generated is (r, ε, qt), where r is the right-
hand side of the rewrite rule employed in v′. This node forms a path
together with previously generated nodes and edges. By the construction
of paths, the finite prefix of Π considered thus far is not maximal and
there is nothing more to show.

(3) In this case the only possible clauses employed in the previous iteration
are (1) and (8). All other clauses, except (9), force the label of the node
in the first argument of ψ to be a triple, which is not the case. Clause (9)
is impossible as it requires the redex u to occur above itself in s.

Obviously, ρ is unaffected by this clause, thus satisfying the necessary
requirements. By the clauses possible in the previous iteration and the
definition of descendants, qt = pu. Also by the clauses possible in the
previous iteration, the next node generated is (t, qt) and the node forms a
path together with previously generated nodes and edges. By construction
of paths, the finite prefix of Π considered thus far is not maximal and there
is nothing more to show.

(4) As before, the only possible clauses employed in the previous iteration are
(1), (8), and (9). All other clauses force the label of the node in the first
argument of ψ to be a triple, which is not the case.
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A node labelled (t, qt) and an unlabelled edge are generated. By the clauses
possible in the previous iteration, (t, qt) forms a path together with the
previously generated nodes and edges. The partial map ρ is unaffected by
this clause, thus satisfying the necessary requirements.

Also by the the clauses possible in the previous iteration, qt is a descendant
of p and root(t|qt

) is a variable bound by a residual v′ of v in t, where
by construction ρ(v) is the position of v′. Hence, the unlabelled edge
is allowed. That a node labelled (r, p′, ρ(v)), where r is the right-hand
side of the rewrite rule employed in v′, has been generated as the last
node labelled with ρ(v) follows by definition of ψ. Hence, the next node
generated is (r, p·i, ρ(v)). This node forms a path together with previously
generated nodes and edges. By construction of paths, the finite prefix of
Π considered thus far is not maximal and there is nothing more to show.

(5) As before, the only possible clauses employed in the previous iteration are
(1), (8), and (9). All other clauses force the label of the node in the first
argument of ψ to be a triple, which is not the case.

Obviously, ρ is unaffected by this clause, thus satisfying the necessary
requirements. By the clauses in the previous iteration, the requirements
of the two subcases are satisfied and the next node generated is (t, qt).
By construction of paths, the finite prefix of Π considered thus far is not
maximal and there is nothing more to show.

(6) In this case the only possible clauses employed in the previous iteration
are (2), (4), and (6). Clauses (1), (8), and (9) force the label of the node
in the first argument of ψ to be a tuple, which is not the case. Clauses
(3) and (5) force v to be equal to u, which is not allowed.

A node labelled (r, p, qt) is generated and possibly an edge labelled i.
By the clauses possible in the previous iteration, (r, p, qt) forms a path
together with the previously generated nodes and edges. The partial map
ρ is unaffected by this clause, thus satisfying the necessary requirements.

As r is left unchanged, it holds in case of clause (a), that the path is
maximal like Π. In case of clause (b), the edge labelled i is allowed and
the next node generated is (r, p · i, qt). This node forms a path together
with previously generated nodes and edges. By construction of paths, the
finite prefix of Π considered thus far is not maximal and there is nothing
more to show.

(7) In this case the only possible clauses employed in the previous iteration
are (3), (5), and (7). Clauses (1), (8), and (9) force the label of the node
in the first argument of ψ to be a tuple, which is not the case. Clauses
(2) and (4) force v to be unequal to u.

A node labelled (t, qt) is generated and possibly an edge labelled i. By the
clauses possible in the previous iteration (t, qt) forms a path together with
the previously generated nodes and edges. The partial map ρ is unaffected
by this clause, thus satisfying the necessary requirements.
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Also by the clauses possible in the previous iteration, qt = pu · q and
root(t|qt

) = root(rσ|p), where q is a descendant of p across complete de-
velopment of the parallel β-redexes in rσ, with rσ as defined above Defi-
nition 4.14. Hence, in case of clause (a), the path is maximal like Π. In
case of clause (b), the edge labelled i is allowed. Moreover, the next node
generated is (t, qt · i). This node forms a path together with previously
generated nodes and edges. By construction of paths, the finite prefix of
Π considered thus far is not maximal and there is nothing more to show.

(8) In this case the only possible clauses employed in the previous iteration
are (2), (4), and (6). Clauses (1), (8), and (9) force the label of the node
in the first argument of ψ to be a tuple, which is not the case. Clauses
(3) and (5) force v to be equal to u, which is not allowed.

In this case a node labelled (r, p, qt) and an unlabelled edge are generated.
By the clauses possible in the previous iteration, (r, p, qt) forms a path
together with the previously generated nodes and edges. The partial map
ρ is unaffected by this clause, thus satisfying the necessary requirements.

As r is left unchanged, the unlabelled edge is allowed. Moreover, as a
residual of v occurs at qt, the next node generated is (t, qt · q). This
node forms a path together with previously generated nodes and edges.
By construction of paths, the finite prefix of Π considered thus far is not
maximal and there is nothing more to show.

(9) In this case the only possible clauses employed in the previous iteration
are (3), (5), and (7). Clauses (1), (8), and (9) force the label of the node
in the first argument of ψ to be a tuple, which is not the case. Clauses
(2) and (4) force v to be unequal to u.

Obviously, ρ is unaffected by this clause, thus satisfying the necessary
requirements. By the clauses in the previous iteration, the requirement
that qt is a descendant of pu · q is satisfied in the first subcase, and the
requirements of clause (5) are satisfied in the second subcase. Moreover,
the next node generated is (t, qt). By construction of paths, the finite
prefix of Π considered thus far is not maximal and there is nothing more
to show.

There can be no infinite cycle of iterations employing clauses (5) and (9) in
the construction of θu(Π), because that implies the existence of an infinite chain
of meta-variables in r. Hence, θu(Π) is a well-defined path of t with respect to
U/u. In case Π is finite, the induction shows that θu(Π) is maximal. In case Π
is infinite, so is θu(Π), and we conclude that θu(Π) is a maximal path.

The next lemma relates the maximal paths of s with respect to U to the
maximal paths of t with respect to U/u. In the proof of the lemma we leave out
the labels of the explicitly denoted edges.

Proposition A.4. The map θu is a bijection.
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Proof. Let u ∈ U and s → t by contracting u. By Proposition A.3, we have
that θu maps maximal paths of s with respect to U to maximal paths of t with
respect to U/u.

To prove that θu is surjective, let Πt be a maximal path of t with respect to
U/u. We are done if Πt = θu(Πs) for some maximal path Πs of s with respect
to U . Otherwise, Πt has a finite non-empty prefix Π′

t in common with θu(Πs)
for some maximal path Πs of s with respect to U . The prefix is non-empty since
any path of t begins with (t, ε). Let Π′

t be the longest finite prefix of Πt such
that θu(Πs) = Π′

t → · · · for some maximal path Πs. We have Πs = Π′
s → · · ·

for some finite path Π′
s. By definition of θu we can extend the prefix Π′

t with
a new node precisely when we can extend Π′

s. Hence, Π′
t cannot be the longest

finite prefix with θu(Πs) = Π′
t → · · · for some maximal path Πs in s, since we

can extend Π′
s to form a new maximal path with more nodes, contradiction.

Hence, Πt = θu(Πs) for some maximal path Πs.
To prove that θu is injective, suppose there exist two maximal paths Π and

Π′ of s with respect to U such that θu(Π) = θu(Π′). Let Π∗ be the longest prefix
shared between Π and Π′. The prefix Π∗ is non-empty, as any path of s begins
with (s, ε). There are now two cases to consider depending on Π∗ ending in an
edge or a node.

In case Π∗ ends in an edge, the next node is uniquely determined by the
definition of paths. Hence, as Π and Π′ are maximal, we can extend Π∗ with
that unique node, contradiction.

In case Π∗ ends in a node, at least one of Π and Π′ extends Π∗, otherwise
Π = Π′. In case the extension is with an unlabelled edge, the other path must
also extend Π∗ with an unlabelled edge. This follows by the definition of paths
and by Π and Π′ being maximal. Otherwise, in case the extension is with an
edge labelled i, the other path must also extend Π∗ with an edge labelled i. This
follows by definition of paths and θu(Π) = θu(Π′). Hence, in case Π∗ ends in a
node a contradiction also follows and we can conclude that θu is injective.

We finally prove Lemma 6.7.

Proof of Lemma 6.7. By Proposition A.4, the map θu is a bijection between the
maximal paths of s with respect to U and the maximal paths of t with respect to
U/u. By Proposition 6.6, a bijection exists between the set of paths and the set
of path projections mapping unlabelled edges to ε-labelled edges and labelled
edges to edges with the same label. Hence, θu induces a bijection θ′u between
P(s,U) and P(t,U/u). By examining the construction of θu, we see that it
only deletes unlabelled edges and nodes corresponding to meta-variables of u
and variables bound by u. Moreover, it is evident that if an infinite sequence
of nodes and unlabelled edges were deleted, the right-hand side of the rule of u
would contain an infinite chain of meta-variables, contradicting the definition of
meta-terms. Hence, φ(θ′u(Π)) can be obtained by φ(Π) by deleting only finite
sequences of unlabelled nodes and ε-labelled edges, as required.
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