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Abstract 

 

GPU-accelerated computing is being adopted increasingly in a number of areas, ranging from high-

end scientific computing to mobile and embedded computing. While GPU programs routinely 

provide high computational throughput in a number of areas, they also prove to be notoriously 

difficult to write and optimize correctly, largely due to the subtleties of GPU concurrency. This 

chapter discusses several issues that make GPU programming hard, and examines recent progress 

on rigorous methods for formal analysis of GPU software. Our key observation is that given the fast-

paced advances in GPU programming, the use of rigorous specification and verification methods 

must be an integral part of the culture of programming and training, and not an afterthought. 

 

 

1. GPUs in Support of Parallel Computing 
 

When the stakes are high, money is no object in a nation's quest for computing power. For instance, 

the SAGE air-defense network [41] was built using a computing system with 60,000 vacuum tubes, 

weighing 250 tons, consuming 3MW of power, and at a cost of over $8 billion, in 1964. Now (five 

decades later), a door-lock computer often exceeds SAGE in computing power, and more than ever, 

we are critically dependent on computers becoming faster as well as more energy efficient. This is 

not only true for defense, but for every walk of science and engineering, and societal sector. 

Graphics processing units (GPUs) are a natural outgrowth of the computational demands placed by 

today's applications on such stringently power-capped and wire-delay bounded hardware [12]. GPUs 

achieve higher computational efficiency than CPUs by employing simpler cores, and hide memory 

latency by switching away from stalled threads. Overall, their throughput-oriented execution model 

is a good match for many data-parallel applications. 

The rate of evolution of GPUs is spectacular: from the 3M transistor Nvidia NV3 in 1997, their 

trajectory is marked by the 7B transistor Nvidia GK110 (Kepler) in 2012 [42]. Nvidia's CUDA 

programming model, introduced in 2007, provided a dramatic step up from the baroque notation 

associated with writing pixel and vertex shaders, and the recent CUDA 7.5 [34] offers versatile 

concurrency primitives. OpenCL, an industry standard programming model [25] supported by all 

major device vendors, including Nvidia, AMD, ARM and Imagination Technologies, provides a 

straightforward, portable mapping of computational intent to tens of thousands of cores. 



GPUs now go far beyond graphics applications, forming an essential component in our quest for 

parallelism, in diverse areas such as gaming, web search, genome sequencing and high-performance 

supercomputing. 

Bugs in Parallel and GPU Code.  Correctness of programs has been a fundamental challenge of 

computer science even from the time of Turing [33].  Parallel programs written using CPU threads or 

message passing (e.g., MPI) are more error prone than sequential programs, as the programmer has 

to encode the logic of synchronization and communication among the threads, and arrange for 

resources (primarily the memory) to be shared. This situation leads to bugs that are very difficult to 

locate and rectify. 

In contrast to general concurrent programs, GPU programs are “embarrassingly parallel”, with 

threads being subject to structured rules for control and synchronization. Nevertheless, GPU 

programs pose certain unique debugging challenges which have not received sufficient attention, as 

will be clear in the sequel when we discuss GPU bugs in detail. Left unchecked, GPU bugs can 

become show-stoppers, rendering simulation results produced by multi-million dollar scientific 

projects utterly useless. Sudden inexplicable crashes, non-reproducible executions, as well as non-

reproducible scientific results are all the dirty laundry that often goes unnoticed amidst the din of 

Exascale computing. 

Yet, these bugs do occur, and seriously worry experts who often struggle to bring up newly 

commissioned machines or are pulled away from doing useful science.  The purpose of this chapter 

is to describe some of these challenges, provide an understanding of the solutions being developed, 

and characterize what remains to be accomplished. 

After introducing GPUs at a high level (Section  2), we survey some key GPU correctness issues in a 

manner that the program analysis and verification community can benefit from (Section 3). The key 

question addressed is: What are the correctness challenges, and how can we benefit from joint 

efforts to address scalability and reliability? We then address the question: How can we build 

rigorous correctness checking tools that handle today’s as well as upcoming forms of heterogeneous 

concurrency?  To this end we discuss existing tools that help establish correctness, providing a high 

level description of how they operate and summarizing their limitations (Section 4). We conclude 

with our perspective on the imperatives for further work in this field through a call to action for (a) 

research-driven advances in correctness checking methods for GPU-accelerated software, motivated 

by open problems, and (b) dissemination and technology transfer activities to increase uptake of 

analysis tools by industry (Section 5). 

 

 

1 #define ACCUM_N 1024 

2 __global__ void dotProduct(float *d_A, float *d_B, 

3                            float *d_c, int n) { 

4   __shared__ float accumResult[ACCUM_N]; 

5   int tid = threadIdx.x; 

6   int bdim = blockDim.x; 

7 

8   // (a) Compute partial sums 

9   for (int i = tid; i < ACCUM_N; i += bdim) { 

10     float sum = 0; 



11     for (int j = i; j < n; j += ACCUM_N) { 

12       sum += d_A[j] * d_B[j]; 

13     } 

14     accumResult[i] = sum; 

15   } 

16 

17   // (b) Reduce 

18   for (int stride = ACCUM_N / 2; stride > 0; 

19        stride >>= 1) { 

20     __syncthreads(); 

21     for (int i = tid; i < stride; i += bdim) { 

22       accumResult[i] += accumResult[stride + i]; 

23     } 

24   } 

25 

26   if (tid == 0) *d_c = accumResult[0]; 

27  } 

Figure 1: Dot product kernel adapted from the CUDA 5.0 SDK 

 

2. A Quick Introduction to GPUs 
 

GPUs are commonly used as parallel co-processors under the control of a host CPU in a 

heterogeneous system.  In this setting, a task with abundant parallelism can be offloaded to the GPU 

as a kernel: a template specifying the behavior of an arbitrary thread. Figure 1 presents a CUDA 

kernel for performing a parallel dot product of two vectors, adapted from the CUDA 5.0 SDK [35], 

which we use as a running example. 

We provide a brief overview of the GPU programming model. As we introduce each concept and 

component, we give the CUDA term for the concept or component, followed by the OpenCL term in 

parentheses if it is different, and use the CUDA term thereafter. 

Organization of threads.  Kernels are executed on a GPU by many lightweight threads (work-items) 

organised hierarchically as a grid (NDRange) of thread-blocks (work-groups), as illustrated by Figure 

2.  For example, a grid of 4 thread-blocks each of 256 threads results in 1024 threads each running a 

copy of a kernel.  The __global__ annotation in Figure 1 indicates that dotProduct is a kernel 

function. 

Within the kernel, a thread can query its position within the grid hierarchy (as well as the grid and 

thread-block dimensions) using built-ins such as threadIdx (get_local_id) and blockDim 

(get_local_size).  Grids and blocks can be multi-dimensional, and e.g. blockDim.x 

(get_local_size(0)) and threadIdx.x (get_local_id(0)) provide, respectively, the 

size of a thread-block and the id of a thread within its block in the first dimension. This allows 

threads to operate on distinct data and to follow distinct execution paths through the kernel. 

 

 



 

Figure 2: GPU thread and memory hierarchy, adapted from [34] 

 

Memory spaces.  Threads on a GPU can access data from multiple memory spaces arranged in a 

hierarchy that reflects thread organisation, as shown in Figure 2.  In descending order of size, scope-

visibility and latency: 

• A large global memory visible to all threads in a grid. In CUDA, pointer parameters to a kernel refer 

to global memory arrays, thus d_a, d_b and d_c in Figure 1 are global arrays.  The kernel computes 

the dot product of the arrays d_A and d_B and stores the result in d_c (a one-element array). 

• A per-thread-block shared (local) memory visible to all threads within the same thread-block. The 

__shared__ annotation in Figure 1 specifies that the accumResult array resides in shared 

memory.  Each thread-block has a distinct copy of this array, which is used for accumulating partial 

dot product values. 

• A small per-thread private memory. Loop variables i, j and stride in Figure 1 reside in private 

memory. Each thread has a separate copy of these variables. 

It is the programmer's responsibility to orchestrate data movement between the global and shared 

memory spaces.  Memory coalescing is an important property for performance reasons.  When 

adjacent threads access contiguous memory locations, the hardware can coalesce these accesses 

into fewer memory transactions and therefore increase bandwidth. 

While threads share certain memory spaces, memory writes do not become instantaneously visible 

to all threads (as this would severely impede performance).  In computer architecture, the concept 

of memory consistency models is used to clearly explain when threads may observe the writes of 

other threads.  GPU programming models specify a weak memory consistency model [34, 25].  That 

is, the updates and order of accesses of a given thread are not guaranteed to be observable by other 

threads. 



Barrier synchronization.  Barriers facilitate safe communication between threads of the same 

thread-block. A barrier operation causes a thread to stall until all threads in the thread-block have 

reached the same barrier.  In fact, the barrier must be reached under the same control-flow by all 

threads in order to avoid the problem of barrier divergence, which results in undefined behavior.  

The dot product kernel uses barrier synchronization, indicated by __syncthreads(), to ensure 

proper ordering of updates to the shared array accumResult. 

Barriers cannot be used for synchronization between threads in distinct thread-blocks. Instead, this 

requires the programmer to split the workload into multiple kernels that are invoked in sequence. 

Threads in different thread-blocks can use atomic operations to communicate via global memory. 

Warps and lock step execution.  On Nvidia GPUs, the hardware executes a thread-block by 

dynamically partitioning it into sets of warps; AMD GPUs have a similar notion of a wave-front.  

Currently, Nvidia specifies that a warp is a set of 32 adjacent threads of the thread-block. Threads 

within the same warp execute in lock step and so are implicitly synchronized; we comment on the 

opportunities and dangers presented by this phenomenon in Section 3. 

 

 

Figure 3: A tree reduction as used in the kernel of Figure 1 

 

Dot product example.  We are now suitably equipped to discuss the kernel in Figure 1. Consider the 

kernel when it is invoked with a single thread-block of 128 threads (i.e. blockDim.x = 128) where 

the length n of the input arrays equals 4096. 

The kernel has two parallel phases.  In the first phase, partial products are accumulated into the 

shared array accumResult. The outer loop assigns a distinct thread to each element of the 

accumResult array.  Because there are more elements (ACCUM_N) than threads the outer loop 

assigns ACCUM_N/blockDim.x = 8 elements per thread.  For example, thread 0 is assigned 

elements 0, 128, 256, . . . , 896.  The result for each element i of the output is accumulated in the 

thread-private variable sum and accumulated by the inner loop. The inner loop performs 

n/ACCUM_N = 4 partial products at ACCUM_N intervals. For example, the inner loop for thread 0 

when i = 0 will compute ∑ aj bj for j in {0, 1024, 2048, 3072}.  The stride of accesses ensures 

coalesced memory accesses to global memory. 

In the second phase, the partial products are reduced into the final expected result. Instead of 

summing ACCUM_N elements serially, the kernel uses a parallel tree reduction.  The reduction is 

performed using a logical tree.  A simplified reduction tree for 8 elements is given in Figure 3.  Each 

iteration of the loop – using descending power-of-two stride values – corresponds to a different 



level of the tree. The barrier ensures that the updates of a given level are ordered before any access 

at the next level and is thus a form of inter-thread communication. 

 

3. Correctness Issues in GPU Programming 
 

We now outline four key classes of correctness issues that can make the transition from CPUs to 

GPUs hard. 

Data races.  Insufficient or misplaced barriers can lead to data races.  A data race occurs if two 

threads access the same memory location (in global or shared memory) where at least one access is 

non-atomic, at least one access modifies the location, and there is no intervening barrier 

synchronization that involves both threads.  (In OpenCL 2.0, synchronization between certain atomic 

operations can also be used to avoid races; we do not delve into the details of this here.)  For 

example, consider the in-place tree reduction of the dot product kernel in Figure 1. The barrier at 

line 20 ensures that all accesses at a given iteration (when stride = k, say) are ordered before any 

accesses at the next iteration (when stride = k/2).  If the barrier is omitted then thread 0 with 

stride 2 and thread 2 with stride 4 will race on accumResult[2]. 

In most concurrent programs, races are tell-tale indicators that something is seriously wrong with 

the code, including the potential for non-deterministic results or semantically incoherent updates 

due to insufficient atomicity.  GPU programming models (e.g. OpenCL) require the programmer to 

write data-race-free code.  Programs containing data races have undefined semantics. Consequently, 

many compiler optimizations assume race-freedom; in the presence of races they may produce 

unexpected results. 

One can guard against data races through conservative barrier placement, but excessive use of 

barriers can be problematic for two reasons.  First, barriers are expensive to execute, so that 

superfluous synchronization introduces an unnecessary performance overhead.  Second, placing 

barriers in conditional code can be dangerous due to the problem of barrier divergence discussed in 

Section 2. 

On Nvidia GPUs, many CUDA programmers choose to elide barriers in the case where 

synchronization is required only between threads in the same warp.  For instance, the last 6 

iterations of the tree reduction loop in phase two of the dot product kernel (Figure 1) might be 

replaced with the following sequence of statements, to avoid explicit synchronization when the 

stride is less than or equal to 32: 

  if(tid < 32) accumResult[tid] += accumResult[tid + 32]; 

  if(tid < 16) accumResult[tid] += accumResult[tid + 16]; 

  if(tid <  8) accumResult[tid] += accumResult[tid +  8]; 

  if(tid <  4) accumResult[tid] += accumResult[tid +  4]; 

  if(tid <  2) accumResult[tid] += accumResult[tid +  2]; 

  if(tid <  1) accumResult[tid] += accumResult[tid +  1]; 

 

This practice relies on the compiler preserving implicit intra-warp synchronization during 

optimization. It is not clear whether this is the case.  Advice related to intra-warp synchronization 

was removed in version 5.0 of the CUDA Programming Guide, and there is disagreement between 



practitioners about the guarantees provided by current platforms in this regard (see, e.g., an Nvidia 

forum discussion on the topic [37]). 

Nevertheless, some samples that ship with the CUDA 5.0 SDK rely on implicit intra-warp 

synchronization.  More surprisingly, OpenCL kernels in open source benchmark suites such as Parboil 

[47] and SHOC [22] elide barriers in the above manner. This is clearly erroneous since the notion of 

lock step warps is not part of the OpenCL specification. 

Recent work has shown that Nvidia and AMD GPUs exhibit weak memory behaviors (as discussed in 

Section 2), whereby non-sequentially consistent executions can be observed, and that this is a 

source of subtle software defects [1].  Bugs arising due to weak memory effects will become 

increasingly relevant as GPU applications move towards exploiting fine-grained concurrency in place 

of barrier synchronization. 

 

1 // Pre: ’count’ initialized to #thread-blocks 

2 __threadfence(); 

3 __syncthreads(); 

4 if(threadIdx.x == 0) { 

5   atomicDec(count); 

6   while(atomicAdd(count, 0) > 0) { } 

7 } 

8 __syncthreads(); 

9 __threadfence(); 

Figure 4: An attempt to implement an inter-block barrier in CUDA is foiled by lack of progress guarantees 
between thread-blocks 

 

Lack of forward progress guarantees.  The lack of fair scheduling of threads on GPU architectures is 

another source of defects. 

Figure 4 shows an attempt to implement an inter-block barrier in CUDA.  The idea behind this well-

known strategy is as follows.  Each thread synchronizes within its block (line 3) after which the leader 

of each thread-block (the thread with threadIdx.x = 0) atomically decrements a counter (line 5). 

Assuming the counter was initialized to the total number of thread-blocks (comment on line 1), it 

might appear that spinning until the counter reaches zero (line 6) would suffice to ensure that every 

leader has passed the decrement (line 5).  (Note that the counter value is retrieved by atomically 

adding zero to the counter; atomicAdd returns the old value of the location operated upon.  Using 

an atomic operation, rather than a plain load operation, avoids data races between accesses to the 

counter.)  If spinning until the counter reaches zero would indeed ensure that every leader has 

passed the decrement then a global synchronization would have been achieved, and the leader 

could re-synchronize with the rest of its block (line 8), allowing execution to recommence. The 

purpose of the fences (lines 2 and 9) is to ensure that memory access operations before the global 

synchronization point take effect before memory access operations after the global synchronization 

point.  For a community discussion of the strategy and its problems, see e.g. [45]. 

The problem with this barrier implementation is that it assumes forward progress between thread-

blocks.  However, if sufficiently many CUDA blocks are requested then they will be scheduled in 

waves: a number of blocks will be scheduled and must run to completion before compute units are 



freed for further blocks to be scheduled.  This scenario leads to deadlock: leaders of the blocks 

scheduled in the first wave get stuck spinning at line 6, waiting for the counter to be decremented by 

leaders of additional blocks; these blocks in turn cannot be scheduled until the initial blocks 

complete execution. An analogous attempt to implement global synchronization in OpenCL does not 

work either, for the same reason. 

This example illustrates unfair scheduling across thread-blocks. Similar lack of progress issues arise 

between threads within a CUDA thread-block because, as discussed in Section 2, a thread-block is 

subdivided into warps such that threads in the same warp execute in lock step, executing identical 

instruction sequences.  This leads to deadlock if a programmer attempts to force a thread to busy-

wait for another thread in the same warp; progress would require the threads to genuinely execute 

distinct instructions at runtime.  This defeats the naïve implementation of an intra-block critical 

section based on busy waiting.  For an example of this issue, with a community discussion, see [46]. 

Floating point accuracy.  Achieving equivalence to a reference implementation can be especially 

challenging for kernels that compute on floating point data, which are commonplace in high 

performance computing. 

 

 

Figure 5: Both reduction trees compute a sum over ai but can yield different results because floating point 
addition is not associative 

 

It can be convenient to assume that floating point operators have the algebraic properties of real 

numbers when designing parallel algorithms.  For instance, the sum reduction operation, in which all 

elements of an array are added, can be parallelized through a computation tree illustrated by the 

diagrams of Figure 5. A tree-based approach allows reduction in a logarithmic number of steps if the 

number of parallel processing elements exceeds the size of the array.  The figure shows two possible 

computation trees for an eight-element array. If addition were associative, that is, if the law (x + y) + 

z = x + (y + z) held for all floating point values x, y and z, with + denoting floating point addition, the 

computation trees would yield identical results, and the result would be the same as that of the left-

associative sum obtained from a straightforward sequential implementation. However, it is well 

known that floating point addition is not associative so that results are expected to differ depending 

on how the parallel algorithm is structured. 

While these issues are shared by CPUs, what perhaps makes these concerns particularly important 

for GPUs is the fact that GPUs are throughput oriented, and have much smaller caches.  Thus, the 

added penalty of using double-precision arithmetic everywhere (instead of single-precision almost 

everywhere) tends to be higher with GPUs, especially since the number of double-precision units on 



a GPU is typically small.  There are also language-specific issues related to floating point accuracy in 

the context of GPUs.  For example, whether denormal numbers are accurately represented in 

OpenCL is implementation-defined, and OpenCL provides a half precision data type, specifying only 

minimal (not exact) accuracy requirements for associated operators. Implementation differences 

make it hard to write high-performance floating point code that behaves with an acceptable degree 

of precision on multiple GPU platforms.  

4. The Need for Effective Tools 
The issues discussed in Section 3 show that practitioners working at the level of OpenCL and CUDA 

cannot avoid being exposed to the “sharp edges” of concurrency.  In some application areas it may 

be possible for non-expert programmers to bypass these issues through the use of domain specific 

languages with associated compilers that generate low-level code automatically (e.g. [48]), at the 

price of flexibility and generality. For programmers who require the flexibility afforded by writing 

lower-level code directly, help is needed in easing the GPU programming task in various forms. 

These include clearer formal documentation and “best practices” guides, as well as tool support for 

correctness checking. 

We now detail state-of-the-art research in methods for data race analysis of GPU kernels, for which 

custom checkers have been designed. Effective methods for checking forward progress properties 

have not yet been studied, and only initial steps have been taken in relation to addressing floating 

point concerns [20]. 

 

 Dynamic bug-finders Symbolic bug-finders Verifiers 
 CMC Oclgrind GKLEE GKLEEp GPUVerify 

OpenCL/CUDA 
support 

CUDA OpenCL CUDA CUDA CUDA + OpenCL 

Analysis coverage Low Medium High 

Precise bug reports ✔ ✔ X X 

Correctness 
guarantees 

X X ✔ 

Scalability to large 
thread counts 

High Medium Low Medium High 

Degree of automation High Medium Low 
Table 1: A summary of the features of several dynamic and symbolic bug-finders and verifiers for CUDA and 
OpenCL 

 

4.1. A Taxonomy of Current Tools 
Most research and tooling efforts on GPU correctness issues have focused detecting or proving 

absence of data races.  The techniques can broadly be categorized into dynamic analysis methods 

[13, 49, 27, 30] (though the method of [27] combines dynamic and static analysis), symbolic 

execution-based approaches [29, 20, 31], and methods that use static, logic-based verification [28, 9, 

10, 11, 43]. 

Table 1 presents a top-level summary of the capabilities of a selection of publicly available tools for 

analysing CUDA and OpenCL kernels.  The table focuses on tools that are actively maintained and is 

not meant to be exhaustive; indeed, we discuss some further tools in what follows. 



Dynamic bug-finding tools, including Oclgrind [39, 38] and CUDA-MEMCHECK (CMC) [36], detect 

defects during dynamic analysis, either while running a kernel on hardware (CMC), or in emulation 

mode (Oclgrind).  These tools are easy to apply automatically and are precise in the bugs they report 

because defects are directly observed.  They provide low analysis coverage (and no correctness 

guarantees) because they check a kernel with respect to a single input.  Scalability to large thread 

counts is limited: Oclgrind serializes execution; the overhead of dynamic race instrumentation with 

CMC is modest, at the price that only races on shared memory, not global memory, can be detected. 

Symbolic bug-finding tools, including GKLEE [29] and KLEE-CL [20], retain bug-finding precision but 

improve on analysis coverage compared with purely dynamic techniques.  This is achieved through 

symbolic execution, whereby all possible kernel a constraint solver is used to check for defects along 

a path for input values, providing correctness guarantees on a per-path basis. State-of-the-art tools 

build on the KLEE symbolic execution engine [14].  These tools tend to scale poorly to large thread 

counts: the bottleneck for symbolic execution is constraint solving overhead, and analysis of a large 

number of threads requires very large sets of constraints to be solved.  (In Section 4.3 we discuss 

GKLEEp, an extension of GKLEE that uses parametric flows to scale to larger thread counts.)  

Automation is basically as high as with dynamic approaches; a little more work may be required to 

decide which inputs to a kernel should be treated as symbolic, though dependence analysis can 

partially automate this process [32]. 

Verification tools, including GPUVerify [9, 10] and PUG [28], provide the highest degree of analysis 

coverage and are able to guarantee absence of certain types of defects under well-defined 

conditions.  (The words “verification” and “guarantee” are arguably contentious since both tools 

have known limitations and sources of unsoundness.  We use these terms because a key aim of 

these tools is to guarantee full behavioral coverage, in contrast to bug-finding methods that do not 

aim to verify correctness and instead prioritize defect detection.)  The price for high coverage is a 

lack of precision in bug reporting: both tools suffer from a high false positive rate, and it may be 

necessary for developers to manually analyse bug reports and write annotations, in the form of 

preconditions, loop invariants and barrier invariants [17], to eliminate false alarms. 

We now explain how state-of-the-art tools exploit the traditional GPU programming model to 

achieve scalable analyses (Section 4.2), and describe two such tools, GKLEE and GPUVerify, in more 

detail (Sections 4.3 and 4.4, respectively). 

4.2. Canonical schedules and the two thread reduction 
Most existing program analysis tools for GPU kernels are restricted to “traditional” GPU programs, 

where barrier synchronization is the only means for communication between threads. The tools 

leverage the simplicity of this setting to achieve scalable analyses, as we now explain. For ease of 

presentation, we assume in the following that all threads are in a single thread-block, so that all 

threads synchronize at a barrier. 

Race freedom implies determinism.  Suppose that a traditional kernel is free from data races.  From 

the initial state of the kernel, a thread executes until it reaches its first barrier without interacting 

with other threads: any such interaction would constitute a data race.  The threads either reach 

different barriers, in which case the kernel suffers from barrier divergence, or all threads reach the 

same barrier.  Thus the initial state of the kernel uniquely determines the state of the kernel when 

all threads reach their first barrier.  If the threads all reach the same barrier then, by a similar 

argument, the threads execute deterministically until they reach another barrier (or the end of the 

kernel), and so on.  The series of barriers at which the threads will synchronize, and the state of the 

kernel at each of these barriers, and at kernel exit, is independent of the order in which threads are 



scheduled.  The argument is presented more formally in [18], and requires that the internal actions 

of threads are deterministic (e.g., threads should not employ randomization). 

Detecting races: “all for one and one for all”.  Suppose a kernel exhibits a data race with respect to 

some input and thread schedule.  Then every thread schedule exhibits a data race with respect to 

this input.  A formal argument for this result is presented in [29].  Informally, if a kernel can exhibit a 

race for a given input then there exists a non-empty set of earliest races for the input: races that are 

guaranteed to occur, independent of whether any race has already occurred. Every schedule is 

guaranteed to expose an earliest race. 

Restricting to a canonical schedule.  The “race freedom implies determinism” and “all for one and 

one for all” properties combine to yield a powerful schedule reduction method: when analysing a 

traditional GPU kernel it suffices to consider a single schedule, as long as data races are detected for 

this schedule and reported as errors.  As a result, the astronomical schedule space of a GPU kernel 

executed by thousands of threads can be collapsed so that just one canonical schedule is considered.  

Reduction to a canonical schedule is an example of partial order reduction [24], a key state space 

reduction technique used by many model checking tools. 

Reduction to a pair of threads.  Because a data race always involves a pair of threads, further 

scalability can be achieved by restricting race analysis to consider the execution of a single, arbitrary 

thread pair, using abstraction to over-approximate the behavior of other threads. If pairwise race-

freedom can be demonstrated then, because the thread pair under consideration was arbitrary, the 

kernel is race-free for all threads. If on the other hand a race is detected, the race may be genuine or 

may be a false alarm induced by the abstraction process.  As part of the case studies in Sections 4.3 

and 4.4, we discuss below how this two thread reduction is employed by the GKLEEp and GPUVerify 

tools. 

4.3. Symbolic bug finding case study: GKLEE 
GKLEE is based on symbolic execution [15], and builds on the execution mechanisms provided by the 

KLEE tool [14]. 

Consider a program fragment for which control flow depends on the evaluation of a predicate f 

applied to a program input: 

if (f(input)) { 

  /* branch 1 */ 

} else { 

  /* branch 2 */ 

} 

 

Traditional testing requires explicitly supplied concrete inputs that cover both branches. The power 

of symbolic execution is that the variable input can be marked as symbolic, and thus treated 

initially as unconstrained.  On reaching the conditional, a constraint solver determines whether 

there exist concrete values for input such that f evaluates to true, and such that f evaluates to 

false.  If there exist inputs such that both branches are feasible then “branch 1” is explored under 

the constraint f(input) and “branch 2” is explored under the constraint ¬f(input), ensuring 

that both branches are covered.  The KLEE tool implements symbolic execution of LLVM bit-code and 

has shown to be very effective in detecting subtle bugs in systems code that evaded manual testing 

for several years [14]. 



We use the following example to illustrate how GKLEE [29] evolves the sequential analysis 

capabilities of KLEE to achieve race checking for CUDA (following a first step in which a CUDA kernel 

is compiled into LLVM bit-code).  In what follows we use tid and bdim as shorthand for 

threadIdx.x and blockDim.x, respectively, and we do not specify the behavior of function f. 

__global__ void race(int *v, int x) { 

  v[tid] = v[(tid + x) % bdim]; 

  __syncthreads(); 

  if (tid % 2 == 0) { 

    ... = v[tid]; 

  } else { 

    v[f(tid)] = ...; 

  } 

} 

 

GKLEE adapts KLEE's memory organization to realize the hierarchical organization shown in Figure 2. 

Based on the idea of canonical scheduling (Section 4.2), GKLEE symbolically executes the given GPU 

threads sequentially between two barriers, recording potentially racing accesses.  A constraint solver 

is then queried to detect scenarios in which races actually manifest.  In the above example, the 

following instruction precedes the first barrier: 

v[tid] = v[(tid + x) % bdim]; 

If this instruction is sequentially executed from the point of view of two threads with ids 0 and 1 (for 

example), we have: 

v[0] = v[(0 + x) % bdim]; v[1] = v[(1 + x) % bdim]; 

In this execution, a potential racing pair of accesses consists of a read from v[(0 + x) % bdim] 

by thread 0 and a write to v[1] by thread 1.  A constraint solver easily determines that this pair 

indeed races for x = 1. 

By default, GKLEE explicitly models all threads that execute a kernel; this approach does not scale to 

large thread counts.  An extension to GKLEE, named GKLEEp [31], employs the two thread reduction 

(Section 4.2) to perform parameterized race analysis between an arbitrary pair of threads: regardless 

of the number of threads that actually execute a kernel, data race detection between barriers can be 

performed with respect to two threads with symbolic ids, representative of the full thread 

population. 

In the above example, the code after the barrier exhibits thread divergence: the even-numbered 

threads read from v[tid] while the odd-numbered threads write to v[f(tid, p)].  GKLEEp 

handles thread divergence as follows: (1) it creates a separate flow group for each branch target, in 

this case one for all even-numbered threads and one for all odd-numbered threads; (2) within each 

flow group, GKLEEp conducts pairwise symbolic execution; (3) the tool checks whether a race is 

possible within each flow group, as well as across flow groups.  In our example, if f is injective (one-

to-one), then there are no races within flow groups, while if f yields the same value for two odd-

numbered threads then there is a write-write race on v in the second flow group.  There is a 

potential race across flow groups if it is possible for f(tid) under condition tid % 2 ≠ 0 to be 

equal to tid under condition tid % 2 = 0.  The power of a symbolic solver lies in the fact that it 

can, very often, find solutions for such equalities by analyzing the function body of functions such as 

f and generating the necessary set of constraints. 



A drawback of parameterized checking is that using the two thread reduction necessitates 

abstraction of additional threads.  This means that, unlike GKLEE, GKLEEp can yield false alarms.  

Another potential drawback is that the number of flow groups can grow exponentially.  Recent work 

has shown that static analysis can be used to overcome this problem in several practical examples 

[32]. 

4.4. Verification case study: GPUVerify 
The GPUVerify tool [9, 10, 4] aims for full verification of race-freedom for OpenCL and CUDA kernels.  

As with GKLEE, a kernel is first translated to LLVM bit-code. The canonical scheduling idea (Section 

4.2) is exploited to transform the kernel into a sequential program in the Boogie intermediate 

verification language [7].  During this transformation, memory access instructions are instrumented 

so that the conditions for checking race-freedom are encoded as assertions to be checked in the 

Boogie program.  Thus proving race-freedom of a kernel amounts to verifying the sequential Boogie 

program generated by this process. This allows for re-use of the Boogie verification framework 

(widely used by other verification tools, including VCC [19] and Spec# [8]), where a program is 

checked by generating a verification condition that can be discharged to an SMT solver.  Verification 

of programs with loops requires loop invariants, and GPUVerify uses the Houdini candidate-based 

invariant generation algorithm [23] for this purpose. 

To achieve scalability to large numbers of threads, GPUVerify employs a two thread reduction (see 

Section 4.2). Unlike GKLEEp, which handles thread-divergent control flow by considering multiple 

pairs of threads, GPUVerify symbolically encodes all control flow scenarios with respect to a single 

thread pair via predicated execution [21, 9, 10].  Because additional threads are modeled abstractly 

when the two thread reduction is employed, analysis using GPUVerify can yield false alarms.  

Another source of false alarms stems from a lack of preconditions describing constraints on kernel 

execution; to some extent this can be overcome through interception of kernels at runtime to 

capture details of their execution environment [6].  A large experimental evaluation with respect to 

publicly available benchmark suites has demonstrated that GPUVerify is able to handle many 

practical GPU kernels [4], and the tool has been used to find numerous defects in these benchmark 

suites (see e.g., a confirmed and fixed SHOC bug report [44] and acknowledgments to Jeroen Ketema 

in the Rodinia 3.1 release notes [40]).  For kernels whose correctness depends on richer shared state 

properties, GPUVerify supports barrier invariant annotations [17].  These allow the precision of the 

shared state abstraction to be increased, at the expense of manual effort. 

5. Call to Action 
We have discussed a number of issues that affect GPU program correctness and the capabilities of 

current solutions.  We now consider the future role GPUs will play in software systems and the 

extent to which the current analysis techniques can be effective in improving the quality of this 

software. 

GPUs will become more pervasive.  The high development cost associated with application-specific 

processors makes the idea of removing such processors from an embedded chip, and implementing 

its functionality as software running on a GPU, an appealing one.  The idea that GPUs may gain 

traction in, for example, the automotive domain further motivates the need to consider safe GPU 

programming.  We may be comfortable with GPU-powered infotainment systems of cars being 

developed without rigorous correctness analysis, but we are likely less comfortable with this 

situation if next-generation GPUs play a more fundamental role. 



As James Larus points out in a recent CACM letter to the editor [26], for reasons of liability 

manufacturers will be increasingly required to demonstrate that software has been rigorously 

developed, and will thus turn their attention to the best available tools and practices. As GPUs 

become more pervasive there will be an even greater need for the sorts of tools surveyed in this 

article. 

Current tools show promise.  Existing tools for GPU program analysis have demonstrated that they 

can help improve the quality of GPU software. For example, GKLEE and GPUVerify have found 

numerous bugs in kernels shipped with the Lonestar, Parboil, Rodinia and SHOC suites. 

However, many challenges lie ahead.  We conclude with a call to action on what we believe to be 

some of the most pressing issues for researchers and industry. 

Solving basic correctness issues.  While today's tools show that analysis for GPU correctness issues 

related to mis-synchronization is tractable, Table 1 shows that no single method provides high 

analysis coverage and precise bug reporting while scaling to large thread counts.  We call to 

researchers for innovation in this regard, through clever combinations of methods or via new 

approaches to the analysis problem.  A particular challenge is reasoning about fine-grained 

concurrency; support for reasoning about atomic operations in mature tools is limited [16, 5], 

though recent methods for reasoning about atomics via concurrent separation logic show promise 

[2].  Fully supporting fine-grained concurrency will require accounting for the relaxed memory 

behaviour of GPU architectures [1]. 

Equivalence checking.  A GPU program is often the evolution of a CPU program, via several 

optimizing transformations. For floating-point code these transformations may be “fuzzy”, 

preserving functionality within an acceptable margin of error and not providing bit-level equivalent 

results.  A fascinating open research challenge is to provide assistance in this transformation process 

via formal equivalence checking methods that tolerate an acceptable degree of fuzziness; this will 

require coping with the combined challenges of reasoning about floating-point and concurrency. 

Clarity from vendors and standards bodies.  Recent research into GPU memory consistency [1] 

indicates that vendor documentation and open standards are not clear on subtle details related to 

the concurrency semantics of GPU kernels.  These subtleties are of essential importance to compiler-

writers, expert programmers, and developers of formal analysis techniques. We call to vendors and 

standards bodies to engage further with the programming languages research community to achieve 

better clarity. 

User validation of tools.  Despite their promise, the current analysis tools for GPU programming 

have only a modest following of professional developers.  Higher user engagement is needed to 

better understand the most pressing problems that developers face.  One preliminary success story 

here is a recent integration of GPUVerify into the Graphics Debugger 2.0 for the ARM Mali GPU 

series [3].  We call on other platform vendors to similarly promote uptake and continued 

development of promising research tools. 

Concerted community action coupled with dialog with industry is a sure-footed way to attain these 

objectives.  After all, future Exascale machines and intelligent navigation systems must trust GPUs to 

safely accelerate computing, and this safety requires tools to aid in systematic software 

development – something that this chapter scratches the surface of. 
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