
Automated Verification
of Executable UML Models

Helle Hvid Hansen1, Jeroen Ketema2, Bas Luttik1, MohammadReza Mousavi1,
Jaco van de Pol2, and Osmar Marchi dos Santos3

1 Eindhoven University of Technology, Eindhoven, the Netherlands
2 University of Twente, Enschede, the Netherlands

3 University of York, York, England

Abstract. We present a fully automated approach to verifying safety
properties of Executable UML models (xUML). Our tool chain consists
of a model transformation program which translates xUML models to
the process algebra mCRL2, followed by symbolic model checking using
LTSmin. If a safety violation is found, an error trace is visualised as a
UML sequence diagram. As a novel feature, our approach allows safety
properties to be specified as UML state machines.

1 Introduction

UML has become the popular modeling approach, driving the development of
industrial applications in many different fields. One such field is the railway
industry, where Executable UML (xUML) [35] is gaining popularity for specifying
critical applications such as railway interlockings. The main goal of interlockings
is to ensure that trains neither collide nor derail. This is achieved by establishing
routes, which comprise tracks, points and other railway components, along which
trains can pass safely. Correctness of interlockings is certainly imperative, and
hence rigorous methods should be employed to verify their safety properties.

In this paper, we report on an automated approach to verifying safety prop-
erties of xUML models. These xUML models may specify the functional require-
ments of interlocking systems, but in principle they are not restricted to the
interlocking domain. One of the target groups for our tool chain are modeling
engineers with no training in formal methods. We accommodate this target group
by allowing the functional requirements (i.e. the actual model) as well as their
safety properties to be specified in xUML. The safety properties are expressed
as state machines that “observe” the behavior of the model, and issue an error
signal if a safety property is violated.

The verification is carried out using the well-known technique called model
checking where the entire state space of a formal model is exhaustively explored
and checked against a property. In our case, the formal model is specified in
the process algebra mCRL2 [21] and the exploration is done using the symbolic
model checking tools of LTSmin [8]. In particular, safety violations are found
by detecting the above-mentioned error signals in the mCRL2 model. An xUML

2 Helle Hvid Hansen et al.

model defines a generic model of object behaviour, but an mCRL2 model de-
scribes the behaviour of a concrete collection of interacting objects. Our tool
chain therefore also takes as input an instance specification from which a model
instance can be created. The verification is thus always carried out with respect
to a particular model instance.

The mCRL2 model is obtained by automatically translating the xUML model,
its safety properties and the instance specification into mCRL2. This automated
translation is implemented using the Eclipse-based model transformation tools
of Epsilon [30, 31]. The translation goes via an internal format called iUML.
This iUML representation is a intermediate step between the hierarchical xUML
model and the “flat” transition system specified in mCRL2. We have several
reasons for using such an intermediate representation. First, a one-step trans-
lation from xUML to mCRL2 would be quite complicated to implement due to
the significant differences between the two languages. In particular, expressions
and actions that can be statically evaluated are transformed in the iUML rather
than translated into mCRL2 and evaluated there. Second, the iUML allows us
to perform static analysis tasks which are not easily cast as a model checking
task. Third, the iUML is sufficiently general to support different variations of
the translation into mCRL2, and we expect that it can serve as a basis for
translations into other target languages such as Promela [25] and Event-B [1].

The functionalites of our tool chain are illustrated in Figure 1 of the next
section. To summarise, the tool chain consists of the following three main steps:
(1) Automated translation of the model, its safety properties and an instance
specification from xUML into the formal specification language mCRL2. (2)
Checking for safety violations by searching for error signals in the mRL2 model.
(3) Visualisation of an error trace as an UML sequence diagram, in case a safety
violation is found.

In the paper [22], we reported on the early developments of our approach.
The main contributions of the present work with respect to [22] are:

1. A method for specifying safety properties as UML state machines.
2. A tool chain which realises a fully automated verification and feedback tra-

jectory, where both input and output are expressed in UML.
3. Automation of the translation from xUML to mCRL2, and a more detailed

description of the translation itself.
4. Investigations into the scalability of our approach by conducting verifica-

tion of several different xUML interlocking models and more realistic track
layouts (that yield model instances).

We believe that items 1 and 2 greatly improve the usability of our approach
to modelling engineers and domain specialists, since only knowledge of UML is
required, rather than familiarity with formal methods. We should point out that
our current translation differs at some point from the translation in [22] (see end
of Section 5).

The rest of this paper is structured as follows. In Section 2, we give a more
detailed overview of our tool chain and its architecture. In Section 3, we introduce
the subset of xUML supported by our tool chain, and discuss its syntax and

Automated Verification of Executable UML Models 3

semantics. In Section 4, iUML is introduced, which is our intermediate format
between the input models and the mCRL2 specification used for model checking.
Section 5 presents the translation schema and Section 6 outlines the verification
methods we used, the challenges we faced, and the results obtained. Finally, in
Section 7 we conclude by discussing related and future work.

2 Tool chain

xUML
model

Safety
property

Instance
spec.

Translation
Formal
model

Model
checking

Diagnostic
trace

Visualisation

Fig. 1: Automatic verification of xUML models

The tool chain achieves its goal in a number of steps of which the details are
hidden behind a rudimentary user interface. The core of this process is depicted
in Figure 1. Next, we give more details on each part of the tool chain.

Input. The inputs of our tool chain comprise two xUML models (specifying the
model itself and its safety properties) and an instance specification (defining the
object identifiers and their roles in associations). The family of xUML models
that can be used as input are described in Section 3. The input xUML models
must be provided in an XMI format that is compatible with the Eclipse UML
Tools v3.0 (which implement the UML 2.2 specification). Currently we support
two ways of generating these XMI files: An xUML model created in Artisan
Studio can be transformed into XMI by our tool chain, or an xUML model can
be created in the UML modeling tool Papyrus [37] which is based on Eclipse just
as several other parts of our tool chain. Finally, the instance specification must
be supplied in a simple text-based format that we defined for this purpose.

Translation. The automated translation from xUML to mCRL2 is implemented
in the Eclipse Modeling Framework [41] (Eclipse Galileo version 3.5.2). In the
Eclipse Modeling Framework (EMF), metamodels define the abstract syntax of
EMF models. In close analogy, the UML superstructure [36] provides a meta-
model that defines the UML language elements and their relationships. But
unlike UML, EMF models generally do not have a graphical representation. As
already mentioned, the automated translation goes via an intermediate repre-
sentation called iUML, and we thus have metamodels that define the structure of

4 Helle Hvid Hansen et al.

iUML models, and of their expressions and actions. We specify metamodels using
the textual syntax of EMFText [23] which also provides a parser generator facil-
ity that we use to transform well-formed strings to EMF models. We access and
manipulate EMF models using the Epsilon model transformation tools [30, 31]:
The transformation from UML to iUML is implemented in the model-to-model
transformation language ETL. Generating mCRL2 code from iUML models is
carried out using the model-to-text transformation language EGL.

Model checking. The generated mCRL2 specification is verified using a combi-
nation of the mCRL2 [21] and LTSmin [8] model checking tool sets (revision
8543 and the next branch dated 3-3-2011, respectively). From the mCRL2 tool
set we use a number of utilities that pre-process the mCRL2 specification. In
this pre-processing, parallel behavior is turned into non-deterministic sequen-
tial behavior and the result is simplified by removing redundant and constant
data parameters. The latter step potentially reduces the size of the generated
state space. The actual state space exploration is achieved using the symbolic
reachability tool from the LTSmin tool set, which also provides distributed and
multi-core reachability tools, and a tool to reduce state spaces modulo branching
bisimulation.

Visualisation In the case one of the specified safety properties is violated in
the chosen instance of the xUML model, LTSmin generates a trace, that is, a
sequence of actions leading to a violation of the property. This trace is visualized
in Eclipse in the form of a UML message sequence diagram. If none of the safety
properties are violated, a message is displayed reporting this result.

3 Executable UML: translation domain

In this section we describe the subset of Executable UML (xUML) [35] that is
covered by our translation. For further information on the UML, we refer to [36].

3.1 Models, classes and state machines

Informally stated, an xUML model is a hierarchical structure that defines types
of objects, their relationships and how they react to events in the system. In our
subset of xUML, a model consists of signals, events, classes and associations.
An event can be a signal event denoted simply by the signal name; a change
event, denoted by when(cond) where cond is the change expression; or a (rela-
tive) time event, denoted by after(n) where n is the timeout delay. We do not
include absolute time events. A class consists of properties, receptions and a
state machine. A property can be an attribute, a generalisation or an association
end. An attribute can be derived in which case it is defined by a Boolean expres-
sion. Derived attribute names start with a slash (/). A generalisation in a class
C is a reference to another class. A class C’ is called a superclass of C if C’ can
be reached from C via the transitive closure of the generalisation relation. We

Automated Verification of Executable UML Models 5

require that attribute names are unique within a class and its superclasses. The
receptions declare the signals that the class will react to, and the state machine
specifies how the class reacts to events. State machines are described below. An
association is an n-ary relation between classes.

Classes and their associations can be graphically represented by a class dia-
gram, as illustrated in Figure 2 which shows the class diagram of a toy exam-
ple called Micro interlocking, kindly provided to us by KnowGravity4. Figure 2
shows that there are five classes: track, point, signal, route and HAL device where
HAL device generalises track, point and signal. (The boxes with labels LCL and
HAL can be ignored.) Furthermore, there are four binary associations, one be-
tween route and track, two between route and point, and one between route and
signal. Note that a route instance should be linked to exactly one signal instance
via the property entry signal. Figure 2 also shows that in class point there are
derived attributes called /at left, /at right and /is locked, but their definitions
are not shown. Similarly, the classes track and route also have derived attributes.

Fig. 2: Class diagram of Micro interlocking

A state machine consists of regions and states (alternatingly nested), and
transitions between states. For a state s, we denote by Regions(s) the regions
immediately contained in s. Similarly, for a region r, we denote by States(r) the
states immediately contained in r. A root region is a region which is contained

4 http://www.knowgravity.com

6 Helle Hvid Hansen et al.

only in the state machine, but not in any state. A state may be simple, com-
posite or concurrent meaning that it contains zero, at least one, or at least two
regions, respectively. Furthermore, states may have entry and exit actions. The
only pseudo-states we allow are initial pseudo-states, so in particular we exclude
(deep) history, final, junction pseudo-states, and entry/exit points. The sets of
all states and regions contained in the state machine of a class C are denoted by
States(C) and Regions(C), respectively.

Example 1. The state machine diagram of point is found in Figure 3, and it
shows, for example, that working and moving are composite, non-concurrent
states (i.e. they contain one region), and the region of working contains the
states left, right and moving. There are no concurrent states in point. All states
except for startup and moving have entry actions. The tags, such as <i> or <ic>,
that prefix signal names indicate a signal stereotype, but this is only a naming
convention, and no UML semantics is derived from these tags.5

A transition t goes from a source state source(t) to a target state target(t),
and is labelled with trg [grd]/eff where trg , grd , eff are the trigger, guard and
effect of t, respectively. The trigger is an event, the guard is a Boolean expression,
and the effect is a sequence of actions that should be carried out when the
transition fires. We require that transition has a single event as trigger, but the
guard and the effect can be omitted. Moreover, we require that for any state s
there is at most one transition triggered by a time event with source s.

A transition t can be internal meaning that source(t) = target(t) and firing
t does not trigger exit or entry actions. In state machine diagrams, an internal
transition in a state s is shown by placing the transition label trg [grd]/eff in
a box below the entry and exit actions of s. For example, in the point state
machine there is an internal transition in the substate left of working with trigger
<ic> move right.

If, for a transition t, source(t) is an initial pseudo-state then target(t) is
called the default entry state of its enclosing region. If source(t) is also directly
contained in a root region, then t is called an initial transition. We require that
initial transitions are unguarded.

A class inherits all properties, association ends, and so on, from its super-
classes. In particular, a class also inherits state machines. So even though we only
allow one state machine per class, when a class C is instantiated, the resulting
object has all the state machines of C and its superclasses.

3.2 Expressions and actions

We now describe the expression language and the action language for our models.
These languages correspond to certain subsets of the SIML-language from [29].

Boolean expressions occur as transition guards, as change conditions, and
as definitions of derived attributes. Apart from the usual Boolean connectives,

5 The version of Artisan Studio used to create this model does not properly support
UML stereotypes.

Automated Verification of Executable UML Models 7

Fig. 3: State machine diagram of point in Micro interlocking

they may include quantification over linked objects thereby referring to non-local
state. Formally, Boolean expressions are generated by the following grammar.

Bool ::= true | false | not Bool | Bool and Bool | Bool or Bool
| in state(#(State)) | DAttr
| forall ObjExpr is true Bool | exists ObjExpr is true Bool

ObjExpr ::= AssocEnd | AssocEnd UNION AssocEnd

where DAttr and AssocEnd are identifiers of a derived attribute and an associ-
ation end, respectively, and State is a sequence of dot-separated state or region
names that describes a state of a given state machine. For example, the substate
left of the state moving in the point state machine (see Figure 3) is referred to by
the expression working.moving.left. Expressions of type ObjExpr denote sets of
objects. Such sets can be specified either as the collections of objects that can be
referenced via association ends, or as a union of such collections. The forall . . .
and exists . . . denote quantification over sets of objects.

8 Helle Hvid Hansen et al.

Examples of Boolean expressions in Micro interlocking are:

in point: in state(#working.left)

in point: exists (L routes UNION R routes) is true /established

in route: forall left points is true /at left

The are two types of basic actions: assignments and sending signals. An
object can send signals to itself, to linked objects, or to some environment in-
terface (referred to as GUI) and they may carry a list of parameters. All actions
can be composed sequentially. Formally, the action language is generated by the
following grammar.

Act ::= send Signal
| send Signal to #GUI

| send ObjExpr.Signal
| Attr := Val
| DAttr := Expr
| Act;Act

Signal ::= SignalName
| SignalName(Params)

Params ::= ParamName := ParamVal
| Params,Params

where ObjExpr is defined as above, Attr is the name of an attribute, DAttr is
the name of a derived attribute, ParamName is an identifier and ParamVal is
an expression that is evaluated at the time the action takes place. An action
send a means that the object is sending the signal a to itself, and send Obs.a
means that the signal a is sent to all objects in the set denoted by Obs.

3.3 UML semantics

An xUML model defines a generic model of communicating objects. A model
instance is obtained by instantiating classes and associations For example, an
instance of the Micro interlocking is defined based on a particular track layout
which specifies a number of tracks, points, signals and routes and how they are
linked (i.e. how the associations are instantiated).

UML semantics defines the operational behaviour of objects, that is, how
objects react to events, and how they communicate with each other. Some of
these aspects are defined by the UML specification [36], but for others the UML
specification allows a choice between different interpretations in order to allow
for flexible modeling. We give a brief, informal description of the semantics that
we follow. We refer to [36, 15.3.12] for more details.

An object of type C is an instance of a class C together with an event pool.
Due to inheritance, an object can have several state machines. These can be
viewed as the concurrently executing regions of a single state machine. In the
rest of this section, we let O denote an object of type C.

The set of states in which the object state machine currently resides is called
the active state configuration. This is a set of states rather than a single state,
due to the presence of concurrent regions. A transition is enabled if its trigger
is available, its source state is active and its guard evaluates to true. When a

Automated Verification of Executable UML Models 9

transition fires, its source state is exited (possibly triggering exit actions), then
the effect actions are carried out, and finally its target state is entered, which
again can trigger entry actions. It is possible that several transitions are enabled
at the same time. In this case, a maximal set of consistent, enabled transitions
is fired. Informally stated, two transitions are consistent if executing one does
not disable the other by exiting its source state. This is, in particular, the case
if the transitions are contained in disjoint regions of the state machine.

The UML specifies a run-to-completion (RTC) semantics which means that
an object must finish all the behaviour triggered by an event, before the next
event can be processed. While an object is processing an event its state is con-
sidered undefined, hence other objects are not allowed to inspect its state at this
point. The behaviour imposed by the RTC semantics can be described by the
following object execution cycle:

O1: Let other objects read the currently active state configuration A, or choose
an available event e for processing by the state machines of O. This marks
the beginning of a run-to-completion (RTC) step in O.

O2: Let T be a maximal, consistent set of enabled transitions in O with trigger
e. If there are several such T s, then one is chosen nondeterministically. Fire
all transitions in (the possibly empty) T (in arbitrary order). The RTC step
is now completed. Go to step O1.

Note that in agreement with UML 2.2 semantics (see Run-to-completion and
concurrency in [36, 15.3.12]) the RTC step applies simultaneously to all regions
of the state machine. But the RTC steps of different objects may be interleaved.

We now define when events are available for processing: A signal event de-
notes the moment when a signal is sent. A signal event is available if it is in the
event pool. A change event when(cond) is available whenever the change condi-
tion cond is true. This seems to conflict with [36, Sec.13.3.7] which says that a
change event occurs when the change condition becomes true. But UML 2.2 does
not specify when change events are detected, or whether they remain after the
change condition becomes false again. In our interpretation change events are
thus detected immediately, but they do not remain. A time event after(n), which
triggers a transition t, is available whenever source(t) is active. This semantics
is based on the assumption that all transitions and actions take place in zero
time.

The UML specification allows for different priority schemes when choosing
an event for processing by an object, see [36, Sec.15.3.12]. We apply the fol-
lowing priority scheme: signals from the object to itself have priority over all
others; signals from the environment, time events and change events have pri-
ority over signals coming from other objects; signals coming from other objects
are processed on a fifo basis (which we realise by implementing the event pool
as a queue). Note that the semantics does not impose any fairness constraints:
an available event is not guaranteed to be processed. In terms of transitions, it
means that a transition may be enabled but never taken.

10 Helle Hvid Hansen et al.

Objects communicate by sending signals to each other. We assume that sig-
nals are never lost or duplicated. The communication is one-to-one (i.e. no broad-
cast) and asynchronous (since signal events are stored in event pools).

4 The iUML representation

The iUML representation can be described as an intermediate step between UML
and a labelled transition system (LTS) representation of object behaviour. The
LTS states are active state configurations and labelled transitions are defined
according to the semantics described in Section 3.3. Furthermore, we use the
iUML to represent model instances.

4.1 Transitions in iUML

In order to associate a unique action sequence with iUML transitions it may be
necessary to refine UML transitions into several iUML transitions. The reason
is that a UML transition t can have a composite source state, hence the (exit)
actions that should be executed when firing t may depend on which nested
substates of source(t) are active. We illustrate the refinement of such a transition
with the following simple example. Consider the transition t from A0 to B0 in
Figure 4. (We have only drawn the elements relevant for the refinement of this
t.) Assume that A0 is active, the trigger of t is available, and its guard is true.

B1

A0 B0

A1

A4 A5

A2

A3

t

Fig. 4: UML transition with composite source state.

In order to determine which actions to carry out when firing t, we need to also
inspect which of the states A1, A2, A3, A4 and A5 are active and whether
they have exit actions defined. Suppose that A0, A4 have exit actions a0, a4,
respectively. We then have two possible exit action sequences when t fires: if A4
is active, the exit action sequence is a4; a0 and if A4 is not active, it is a0. This
motivates the following definitions.

– An active state predicate is a pair (U, V) where U, V ⊆ States(C). An active
state configuration A satisfies (U, V) if U ⊆ A and V ∩ A = ∅. In other
words, A satisfies (U, V) if all states in U are active, and no states in V are
active. We denote by [[(U, V)]] the set of active state configurations of O that
satisfies (U, V).

Automated Verification of Executable UML Models 11

– An iUML transition consists of an active state predicate (instead of a source
state), a target state, a trigger, a guard, an exit sequence, an effect sequence
and an entry sequence. An iUML transition t is enabled if the currently
active state configuration satisfies the active state predicate of t, the trigger
is available and the guard is true.

Due to the nesting of A4 inside the composite state A1, the transition t from
Figure 4 is refined into three iUML transitions t1, t2 and t3 with the following
active state predicates and exit sequences:

flat active state predicate exit sequence
t1 ({A0,A1,A4}, ∅) a4; a0
t2 ({A0,A1}, {A4}) a0
t3 ({A0}, {A1}) a0

Note that in iUML transitions, we keep as much of the high-level representation
of the UML as we can. For example, in the above we have one iUML transition t3
rather than two (where one requires A2 to be active, and the other one requires
A3 to be active). This is facilitated by the use of active state predicates instead
of source states. Note that the entry sequence of a UML transition does not
depend on the currently active state configuration. For example, if in Figure 4
B0, B1 have entry actions b0, b1, respectively, then the entry sequence is b0; b1
for all t1, t2, t3.

4.2 Transition selection

Recall from the object execution cycle (Section 3.3) that upon receiving an
event e, an object must select a maximal, consistent set of enabled transitions
for execution. In the iUML, transitions are grouped together in a way that
reflects the transition selection algorithm. We first group an object’s transitions
by trigger and active state predicate. For each such transition group T , the
consistent subsets of T that can fire depend also on the values of transition
guards. These subsets are called multi-transitions. In the iUML representation,
each object will contain a collection of transition groups, and each transition
group will contain its multi-transitions.

We now give a formal definition. Let O be an object of type C. For an event e,
we let Tr(O, e) be the set of all transitions in O with trigger e. A transition group
with active state predicate (U, V) and trigger e (in object O) is a non-empty,
maximal subset T of Tr(O, e) such that for all t ∈ T , [[(U, V)]] ⊆ [[(Ut, Vt)]] where
(Ut, Vt) is the active state predicate of t. Note that if e is a time event or a
change event, then Tr(O, e) is a singleton and equal to the only transition group
with trigger e. Transition groups that contain several consistent transitions can
result from transitions in concurrent regions.

For example, an object of type point has five transitions triggered by the
signal <ic> move left (see Figure 3). These transitions will result in four tran-
sition groups. One group will contain the two transitions that both have source

12 Helle Hvid Hansen et al.

state working.right; the other three groups will be singletons. Note that the non-
singleton transition group is not consistent (since firing one will disable the other
by exiting working.right). However, these transitions will never be enabled at the
same time, since their guards are complementary.

The subsets of a transition group that can actually fire depends on the con-
sistency of transitions and the value of transition guards. We formalise these
subsets as multi-transitions. A multi-transition of a transition group T is a con-
sistent subset M of T such that M = G ∪ ungrd(T) where G ⊆ grd(T), grd(T)
is the set of all guarded t ∈ T , and ungrd(T) := T \ grd(T).

For example, if T = {t0, t1, t2} is a transition group in which all transitions
are pairwise consistent, and grd(T) = {t1, t2} where gi is the guard of ti for
i = 1, 2, then the multi-transitions of T are {t0, t1, t2}, {t0, t1}, {t0, t2} and {t0}
which correspond to the scenarios where g1 and g2 are both true, only g1 is true,
only g2 is true, or g1, g2 were both false.

5 Translation from iUML to mCRL2

We sketch our translation from iUML into mCRL2. The mCRL2 specification
language [21] extends the process algebra ACP [5] with facilities to specify ab-
stract datatypes (ADTs), and includes built-in types such as Booleans, integers,
and lists. The advantages of translating into mCRL2 are that the language has
a formal semantics [21], and that it comes with powerful verification technology.
The possibility of defining data types and using them in the behavioral specifi-
cation is essential for the translation presented in this section. Process algebras
without ADT support such as CSP [24] supported by the FDR2 toolset [15]
are thus not directly applicable, while process algebras with ADT support such
as E-LOTOS [26] and LOTOS-NT [40] supported by the CADP toolset [16]
provide alternatives for mCRL2 in our setting. We refer to [21] and the web-
site http://www.mcrl2.org for details regarding the syntax and operational
semantics of mCRL2.

Our translation takes as input an iUML model instance M. M describes
a collection of objects that interact by sending signals to each other, but also
by inspecting each others state. We translate each object into an mCRL2 pro-
cess; the translation of the entire model M will then, roughly, be the parallel
composition of the mCRL2 processes associated with the objects inM, and the
interaction between the objects is implemented by means of mCRL2’s facility
for (synchronous) communication between components.

We proceed to discuss the translation of the objects inM as object processes.
Recall that each object has associated with it an event pool, and a collection
of state machines describing its behaviour. An object process will consist of the
parallel composition of a buffer process modelling the event pool, and a state
machine process modelling the actual behaviour of the object. Below we will
discuss the translation of the event pool and object behaviour in more detail,
illustrating the translation on the object p1 of type point (see Fig. 3).

Automated Verification of Executable UML Models 13

Event pool. Signals are specified using mCRL2’s facility for defining abstract
data types. The signals that are to be stored in the event pool of an object
of type C are represented by an enumerated data type C_Messages. That is,
C_Messages has a member for each reception in the class C. The buffer process
of an object of type C receives and stores the signals that are sent to the object
by implementing a queue of C_Messages.

Example 2. The specification of the enumerated type point_Messages is:

point_Messages = struct

ic_move_right_point | ic_move_left_point |

dv_at_right_point| dv_at_left_point ;

The event pool of the object p1 is specified by the following mCRL2 process
specification.

proc point_Buffer_p1(message_buffer: List(point_Messages))=

% Messages received from other components

(#message_buffer < max_buffer_size) ->

sum m: point_Messages. sum sender : Identifiers.

receive_from_system(sender, p1, m).

point_Buffer_p1(message_buffer <| m)

+ % Messages sent to component

(#message_buffer > 0) ->

send_to_component(p1, head(message_buffer)).

point_Buffer_p1(tail(message_buffer));

The specification above expresses that the process point_Buffer_p1 consists of
a choice (denoted by +) between the following options: either (if its buffer is not
full) it receives some element m of sort point_Messages from some sender and
then appends m to its message_buffer, or (if its buffer is not empty) it sends
the first element in message_buffer to the associated state machine, removing
this element from the message_buffer.

States, messages and buffers. The state machine process implements the
concurrent composition of the state machines of the class C, and the process
carries data parameters that encode the active state configuration by letting each
such state parameter range over an enumerated data type that represents the
states contained in a region r. More precisely, we declare for each state machine
X in C and each region r in X, an enumerated data type X__r_States whose
members represent the set States(r). If r is not a root region, then X__r_States

will also have a member (ending with _nop) that will be used to indicate that
no state in r is currently active.

Example 3. The regions in the Point state machine shown in Figure 3 give
rise to enumerated data types: point_States, point__working_States, and
point__working_moving_States. Below we show the definitions of the first two:

14 Helle Hvid Hansen et al.

point_States = struct point__working_States = struct

point__broken_substate point__working_right_substate

| point__startup_substate | point__working_left_substate

| point__working_substate ; | point__working_moving_substate

| point__working_nop ;

Recall from Figure 2 that Point is a specialisation of HAL device; the active state
configurations of the latter are represented by the data type HAL_device_States.
The behaviour defined by the state machines of the object p1 is then expressed
by a process definition of the form

proc point_p1(

HAL_device_state : HAL_device_States,

point_state : point_States,

point__working_state : point__working_States,

point__working_moving_state : point__working_moving_States

) = ...

We postpone the discussion of how the state machines of HAL device and Point
give rise to the right-hand side of the above defining equation for point_p1.
First, we explain how mCRL2’s features of parallel composition, communication
and blocking are used to combine point_Buffer_p1 and point_p1 specifying
the behaviour of the object p1. The object p1 is represented by the following
expression:

proc point_Complex_p1

= block({send_to_component, receive_from_buffer},

comm({send_to_component|receive_from_buffer -> message_to_component},

point_Buffer_p1([])

|| point_p1(HAL_device__normal_substate, point__startup_substate,

point__working_nop, point__working_moving_nop)));

The process point_Complex_p1 is defined as a parallel composition of instances
of the processes point_Buffer_p1 and point_p1. Initially, the active states
are startup (in Point) and normal (in HAL device), and the buffer is empty;
this explains the respective parameter values passed to point_Buffer_p1 and
point_p1. The operation comm expresses a communication between point_p1

and point_Buffer_p1: both components may synchronise by simultaneously ex-
ecuting the action receive_from_buffer and send_to_component; the result-
ing event is denoted by message_to_component. The operation block declares,
in fact, that the actions send_to_component and receive_from_buffer may
not be executed in isolation; they may only occur as part of the aforementioned
synchronisation.

State machine process. We proceed to explain how the behaviour of an object
as expressed by a state machine is translated into mCRL2. The state machine
process implements the object execution cycle (see page 9). Starting from a
“stable state”, which corresponds to O1 in the object execution cycle, the process
can either receive and process an event, or let other processes inspect its state.
This inspection of states is implemented as a communication of state parameter

Automated Verification of Executable UML Models 15

values: a consumer action takes place in the object process that needs the data;
the matching producer action takes place in the object process whose current
state must be known to the consumer.

The possible behaviours in state O1 (process event or send state data) are
modelled as a nondeterministic choice (sum) over the different alternatives. As
an example, part of the state machine process for the object p1 is sketched below.
In the first two summands, a message is received from the buffer. In the next two
summands, a message is received directly from the environment. The following
two summands represent the two time event transitions in the Point state ma-
chine, one has source state startup and the other has source state working.moving.
The last four summands are actions that produce data for the evaluation of
change conditions in two Route objects r1 and r2. They show that in r1, there
are two change conditions that require the expression in state(#(working.right))
to be true in p1.

proc point_p1(<state params>)

= receive_from_buffer(p1,ic_move_left_point). ...

+ receive_from_buffer(p1,ic_move_right_point). ...

+ receive(p1,dv_at_left_point). ...

+ receive(p1,dv_at_right_point). ...

+ (point_state == point__startup_substate) ->

tick(p1). ...

+ (point__working_state == point__working_moving_substate) ->

tick(p1). ...

+ when_data_r1_1_p1_producer(p1,

point__working_state == point__working_right_substate). ...

+ when_data_r1_2_p1_producer(p1,

point__working_state == point__working_right_substate). ...

+ when_data_r2_1_p1_producer(p1,

point__working_state == point__working_left_substate). ...

+ when_data_r2_2_p1_producer(p1,

point__working_state == point__working_left_substate). ...

Recall that in our semantics, time event transitions can fire whenever the
source state is active. The detection of a time event is specified by the action
tick . The tick action does not actually place an event in the buffer. Change events
are specified in a manner similar to time events which we describe towards the
end of this section.

The part of the state machine process that follows an action that models the
choice of an event for processing specifies the transition selection algorithm and
the execution of the selected transitions. Recall now that in the iUML repre-
sentation, we have a representation of the transition selection algorithm given
by transition groups and multi-transitions. The mCRL2 specification that im-
plements the transition selection algorithm consists of a nesting of conditional
statements ranging over transition groups. For each transition group it is checked
whether its active state predicate is satisfied by the currently active state con-
figuration. If this check fails for all transition groups, then the process continues
recursively with its state parameters unchanged. Otherwise, there is a transition
group T for which the active state predicate is satisfied by the currently active

16 Helle Hvid Hansen et al.

state configuration. If the guards of transitions in T refer to the state of other
objects, then the process carries out a number of consumer actions to retrieve
this state information. Next, a conditional statement runs through the multi-
transitions of T ordered decreasingly by size, until it finds a multi-transition M
whose transition guards are all true, and then the action sequence associated
with M is executed, and the state machine process continues recursively with its
state parameters updated to reflect the state after firing the transitions in M .

The mCRL2 code for the transition group in p1 with trigger move left and ac-
tive state predicate ({working.right}, {working.left,working.moving.right,broken})
is shown in Figure 5. The transition group consists of two transitions tleft and
tright with guards not /is locked and /is locked, respectively. Such pairs of transi-
tions with complementary guards result in two singleton multi-transitions. The
derived attribute /is locked in p1 refers to the state of route objects r1 and r2
which explains the communication with r1 and r2 in lines 2-4. These consumer
actions are matched by producer actions in r1 and r2. In line 3, the active state
predicate is checked. In line 7 the transition guard not /is locked is evaluated
using the received data values. Line 8 contains the action that results from firing
the multi-transition {tleft}. Lines 9-13 specify the updated state of the process af-
ter firing {tleft}. If not /is locked evaluates to false in line 7, then /is locked must
evaluate to true, and so the multi-transition {tright} is fired, which is specified
in lines 14-20.

1 point_p1(...) =

2 ...

3 (point__working_state == point__working_right_substate) ->

4 (sum r1_var: Bool. sum r2_var: Bool.

5 condition_data_p1_1_consumer(r1,r1_var)

6 | condition_data_p1_1_consumer(r2,r2_var).

7 (!(r2_var || r1_var)) ->

8 send_to_rail_yard(p1,sv_move_left_point_railyard).

9 point_p1(

10 HAL_device_state,

11 point_state,

12 point__working_moving_substate,

13 point__working_moving_left_substate)

14 <>

15 send_to_environment(p1,i_point_locked_point_environment).

16 point_p1(

17 HAL_device_state,

18 point_state,

19 point__working_state,

20 point__working_moving_state)

21)

Fig. 5: Example mCRL2 code for a transition group

Automated Verification of Executable UML Models 17

A transition tc triggered by a change event c can fire whenever the change
condition is true, and source(tc) is active. If the change condition refers to data
in other objects, then a sequence of consumer actions are executed in order to
obtain the data, similarly to how transition guards are evaluated.

Difference with earlier translation. In our earlier work [22], we presented
a slightly different translation from xUML to mCRL2. This translation was not
formulated in terms of an intermediate format, as it was done by hand. There
are, however, also semantic differences between the two translations:

– In the translation from [22], change events are detected by an additional
monitor component of object processes, and when a change condition be-
comes true, the monitor places a message in the buffer. In particular, change
events remain in the buffer even after the condition becomes false.

– In the translation from [22], change events, object-internal signals, and system-
internal signals have equal priority (all go through the fifo-buffer), and all
these events take priority over external signals. In the current translation,
object-internal signals have priority over all others, and change events, time
events and external events are allowed to overtake system-internal signals.

Based on discussions with the UML modelling engineers, our current trans-
lation is more in line with their view on UML semantics (which is based on
the CASSANDRA simulator [29]) than our previous translation. As a further
advantage, we have found that the mCRL2 models resulting from our current
translation are dealt with more easily by our model checking tools.

6 Verification

Our approach to verifying safety properties of xUML models is based on ex-
pressing the safety properties as UML state machines that observe the system
state and send an error signal in case a violation is found. The model and its
safety properties are both translated into mCRL2, as described in the previ-
ous section, and safety violations are detected by using the facility of our model
checking tools that allow searching for a particular action, in this case, the “send
error signal”-action.

Our motivation for expressing safety properties as state machines is two-fold.
First, it allows UML modelling engineers to specify safety requirements without
having to learn temporal logic. Second, the mCRL2 tools that provide (explicit-
state) model checking of modal mu-calculus formulas were not able to deal with
the sizes of our models. By turning the verification problem into a reachability
problem, we were able to verify our models using the symbolic reachability tool
from the LTSmin tool set [8]. This symbolic tool allows for varying exploration
strategies, and reports some basic performance analytics.

In Section 6.1 we describe how safety properties are modelled as UML state
machines. The verification proper is discussed in Sections 6.2 and 6.3, which
investigate, respectively, the size of the models we are able to deal with, and
ways to ‘attack’ larger models.

18 Helle Hvid Hansen et al.

6.1 Safety properties as observer classes

In an internal document describing the Micro interlocking the following two
safety requirements are given:

MS1: “A point that is locked by an established route shall never move.”
MS2: “The entry signal of a route shall never display proceed when one

of its tracks is not free.”

The exact meaning of the railway signaling concepts mentioned in MS1 and
MS2 is not so important for the present discussion, but one should think of a
route being established as a requirement for letting a train pass (safely) over
the route. What is relevant is that properties such as a point being locked, a
route being established, and hence MS1 and MS2 themselves, can be expressed
in terms of the system’s state, that is, without reference to the ordering of events.
We will use the term state property to refer to such safety properties.

Our approach to verifying state properties is based on the observation that
state property violations can be detected in the system itself as certain change
events. In order to detect such violations we define a collection of observer classes
whose state machines will detect safety violations and send error signals. These
observer classes are expressed in the same subset of xUML as the model we wish
to verify, and we can therefore apply our automated translation to generate an
mCRL2 specification of the “observed model”.

Observer classes. The common structure of observer classes is modelled by the
class StateObserver. The StateObserver class has three attributes: id, Observed-
Object and ObservedClass, one derived attribute /triggered (which will be de-
fined by a Boolean expression), and a state machine with a single transition
with trigger when(/triggered) and effect send <i> violation(observer := id) to

#GUI. The purpose of the attribute ObservedClass is to define the context in which
/triggered is evaluated. The attribute ObservedObject must be the name of an
instance of ObservedClass. All attribute values are defined upon instantiation.

Specific state properties are modelled as specialisations of the class StateOb-
server. These specialisations are what we call observer classes. The state machine
of an observer class consists of just one state and an initial transition to it. The
definition of /triggered, and of any additional derived attributes that may aid
the definition of /triggered, are assigned as the effect of the initial transition. We
illustrate using the two examples MS1 and MS2 from above. It should be clear
that MS1 and MS2 are both state properties.

The property MS1 will be modelled as an observer for the class Point, that is,
the attribute ObservedClass has value “Point”. Hence, the definition of /triggered
may use derived attributes from the Point class such as /is locked which is defined
as /is locked := exists (L routes UNION R routes) is true /is established. In
other words, /is locked is true if the point is locked by an established route, and
we define /triggered := /is locked and in state(#working.moving).

The property MS2 is modelled as an observer for the class Route, and it
defines two “auxiliary” derived attributes /all tracks free and /proceed. The

Automated Verification of Executable UML Models 19

initial transition of its state machine has effect:

/all tracks free := forall tracks is true /is free;

/proceed := entry signal.in state(#proceed);

/triggered := /is established and /proceed and not /all tracks free;

6.2 Feasibility of verification

Given instances of the translated UML models, we would first of all like to know
the size of models we can deal with. To this end we designed several track layouts
for the Micro interlocking which are of increasing complexity. The layouts are
presented in Figure 6 and correspond to simple configurations one might find in
rail yards. Although not depicted in the figure, the possible routes in a layout
are precisely all the maximal paths in starting from a signal and not passing
both the left and right branch of a point (e.g., Layout 5 has six routes).

s1

t1

(a) Layout 1

s1

t1 p1

t3

t2

(b) Layout 2

s1

t1 p1

t3

t2

p2
t4

(c) Layout 3

s1

t1
p1

t3

t2

p2

t5

t4

(d) Layout 4

s11

t11 p1

p2

tm

s12

t12

s21

t21

s22

t22

(e) Layout 5

s1

t1 p1

p3

t2 t3

t4
p4

t5

p2

p5 t6

s2
t7

s3

(f) Layout 6

Fig. 6: Several track layouts used to test the feasibility of the verification task.

20 Helle Hvid Hansen et al.

Using the mCRL2 and LTSmin model checking tool sets (see Section 2) we
can next generate the state spaces for the depicted track layouts. The measure-
ments as obtained with the BDD based symbolic model checker from the LTSmin
tool set are depicted in Table 1. As can be seen in the table, model checking our
simple track layouts is possible, but running times and memory consumption
increase fast when introducing more routes (compare Layouts 4 and 5, where 4
has three routes and 5 has six).

Table 1: State spaces of the layouts from Figure 6, without observers, where each
state machine is assumed to have at most one message in its event pool. Resource
consumption is for the LTSmin symbolic model checker run on an Intel Xeon
X5550 machine with 148 GB of internal memory; a saturation-like [9] exploration
strategy was used. The running times exclude the time to load the model.

Layout Components Routes States Runtime (s) Memory (MB)

1 2 1 1.7×104 0.01 61
2 5 2 1.3×109 0.25 76
3 7 2 4.9×1011 7.73 86
4 8 3 8.9×1013 19.39 115
5 11 6 6.8×1023 2605.90 3133
6 15 8 > 7.0×1030 > 496 h > 30 GB

Given the resources consumed already by Layout 5, we can conclude that
it is impossible to generate complete states spaces for ‘realistic’ layouts, which
usually consists of hundreds of components and routes. Hence, more advanced
methods are required, which are discussed in the next section. Of course, if cer-
tain properties are violated, this might already be detectable when instantiating
the UML models for the small layouts.

Remark 1. The figures in Table 1 make it clear that explicit state space gener-
ation is infeasible. Using the distributed model checker which is also part of the
LTSmin tool set, already Layout 2 is too large to be dealt with on a cluster of
10 Intel Xeon E5335 machines each with 24 GB of internal memory.

Given the simplicity of track layouts and the state machines shown, it may
come as a surprise that the state spaces are so huge. Note, however, that not all
states are depicted in the state machines: First, event pools are not included.
Second, as a sequence of actions that is carried out when a transition fires is
not executed as an atomic block, additional ‘intermediate’ states exist between
actions in the sequence. Third, the communication needed to exchange state
parameters also introduces some additional states.

Remark 2. Bounded model checking (BMC) [6] is not a suitable model checking
technique in the current context. The technique cannot prove the absence of
errors, which is precisely what we are interested in, given the safety critical
nature of interlockings.

Automated Verification of Executable UML Models 21

6.3 Speeding and scaling up verification

Given our interest in proving the presence or absence of certain actions (see
Section 6.1), it might be possible to speed up and scale up the verification. From
the literature at least two symbolic model checking techniques are known that
may help to achieve this:

– Compositional exploration of state spaces [33, 4]: The transition relation is
split into several parts and only some of these are used in state space ex-
ploration. Selection of the employed parts is based on an analysis of the
interaction between the parts and on the particular property one is inter-
ested in. Additional parts are selected in case the property could be neither
proved nor disproved using the selected subset of the transition relation.

– Counterexample-guided abstraction refinement (CEGAR) [11]: Given a prop-
erty, the transition relation is over-approximated (i.e., a relation is used of
which the transition relation is a sub-relation). Next, refinement takes place
based on violations of the property. Eventually either a violation is found
that also holds given the transition relation (i.e., the non-over-approximated
one) or an over-approximation is reached in which the property holds (im-
plying it also holds given the original transition relation).

In [33, 4, 11] it is reported that with both techniques, speed up and scalability
are achieved in case only part of the transition relation is needed to show that the
considered property holds. Moreover, in case of CEGAR speed up and scalability
are also achieved as the symbolic representation of the over-approximated state
space is often smaller than the symbolic representation of the real state space.

Preliminary results. Thus far we have extended the symbolic model checker
from the LTSmin tool set with the first of the aforementioned techniques and
we are currently working on implementing the second technique.

Some preliminary results obtained with the implementation of the first tech-
nique mentioned above are shown in Table 2. The safety properties MS1 and
MS2 (see Section 6.1) have been verified for Layout 2 from Figure 6. Both prop-
erties are violated by the Micro interlocking specification and, hence, an error
trace (of a certain length) can be generated.

It is impossible to draw any definite conclusions given the small sample.
Nevertheless, we note that some speed up is obtained in the case of MS2. Fur-
thermore, the reported lengths of the error traces are encouraging: the length of
the error trace is substantially shorter in the case of MS1, and it is not longer
in the case of MS2.

Remark 3. We do not automatically obtain the shortest trace possible, as we
use a saturation-like strategy instead of breadth-first search. Using breadth-first
increases running times for the layout 2 to 7.05 and 8.98 seconds for MS1 and
MS2, respectively. For layout 2, the shortest error traces for MS1 and MS2
consist, respectively, of 22 and 28 steps.

22 Helle Hvid Hansen et al.

Table 2: Running times and trace lengths when searching for error actions using
the LTSmin symbolic model checker run on an Intel Core 2 Duo machine with
4 GB of internal memory; a saturation-like [9] exploration strategy was used.
The running times include the time to load the model and generate a trace.

Layout Property
Runtime (s) Trace Length

Default Compositional Default Compositional

2
MS1 6.33 6.42 35 22
MS2 7.33 6.78 41 41

7 Discussion and conclusion

We have presented a fully automated, translation-based approach to the verifi-
cation of safety properties in xUML models. Since both the input and the output
of our tool chain are expressed in UML, our verification technology can be used
by engineers without a thorough background in process algebra, model checking,
or modal mu-calculus.

Additional case studies. Our translation from xUML to mCRL2 has been
further applied in two case studies: (i) a UML model of a controller for mixing
hot and cold water, obtained from one of the industrial partners of the Uni-
versity of Twente; (ii) a UML model of the session setup protocol from the
ISO/IEEE 11073-20601 [27] standard (a data exchange standard for the health
care industry).

With regard to item (i), we were able to identify certain property violations.
However, this required the use of temporal logic, as the specified properties were
liveness properties (which we currently cannot capture using our observer state
machine approach). Moreover, since the controller for mixing hot and cold water
is intended to be implemented on a Programmable Logic Controller (PLC), which
does not buffer incoming events, we modified our translation in this respect.

The second case study (ii) was carried out by a colleague from the Eindhoven
University of Technology [28]. After resolving some ambiguity issues in the state
machines provided, the UML model could be translated into mCRL2. The veri-
fication revealed that it is possible for the system setup to reach an unsafe state
(where the communicating devices operate with different measurement units).
However, it was also shown that no unsafe operational behaviour could occur,
due to detection of the unsafe state before the first data exchange.

Related work. Formalisation of xUML models for the purpose of verification
is a widely studied topic, and we mention just a few [2, 3, 12, 20, 34, 42, 44]. We
briefly relate our approach to some of the aforementioned ones. Recall that we
currently support signal, time and change events, but not call events.

Automated Verification of Executable UML Models 23

In the UMC framework of [3], xUML models may be specified in the UMC
specification language. UMC supports signal and call events, but no time or
change events, nor exit/entry actions of states. Properties must be specified in
a CTL-like logic, and are verified using on-the-fly model checking. Specifying
properties of UMC models thus requires some knowledge of formal methods
(and not just of UML), but on the other hand, the types of properties that can
be expressed far exceeds what our observers can define. In [20], xUML models
(with change, call and send events) are translated into a temporal logic that
supports compositional specification, and verification takes the form of refine-
ment proofs. Our approach is based on model checking which has the advantage
that the verification process is fully automatic whereas theorem proving gen-
erally requires human interaction in order to find proofs. In [34], UML state
machines are translated into timed automata using, as we do, model transfor-
mation technology. The resulting timed automaton is verified using the UPPAAL
model checker. It is, however, not clear how the timing constraints of the timed
automaton are derived from the input xUML model, in particular, since only
signal events are allowed as transition triggers (see Rule 10 in [34]).

Formal verification of high-level interlocking specifications has been stud-
ied in [13, 43]. For verification of concrete interlocking systems, see e.g. [10, 14,
19]. One major source of challenges in the verification of xUML models lies
in the asynchronous communication model. It has been observed earlier that
synchronous specifications may be more amenable to automatic and exhaustive
verification; see, e.g., [39], for a short experience report in the domain of railway
interlockings.

Our approach to modelling safety properties of xUML models in xUML it-
self seems to be new, but similar ideas are found in [7, 17, 18, 32, 38]. The main
difference with our work is that our observers monitor state changes whereas
the above-mentioned observers monitor event sequences, and hence they are
able to express temporal properties. The expression of liveness properties in our
approach is still very much an open issue.

Future work. In the future, we intend to extend the subset of xUML covered in
our translation. In particular, we would like to include synchronous calls, which
are used in the more elaborate xUML models of railways interlockings that we
have been presented with. We would also like to extend our approach to speci-
fying safety properties in UML to include specification of temporal properties.

Moreover, we would like to give a formal operational semantics of our xUML
models, so that we can make formal statements about the generic properties
of models, as well as a formal comparison of different alternative approaches
to the xUML semantics. In order to enhance the scalability of our verification
techniques, we will continue our efforts to adopt compositional techniques as
well as counterexample-guided abstraction refinement.

Acknowledgements The authors thank Louis Rose for his helpful comments
on an earlier draft of this paper.

24 Helle Hvid Hansen et al.

Funding This research is partially funded by the European Comission (EC), as
a grant to the FP7 project INESS, grant agreement no. 218575. Any opinions,
findings and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of either the EC or the
INESS consortium.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. R. Alur and M. Yannakakis. Model checking of hierarchical state machines. ACM
Transactions on Programming Languages and Systems, 23(3):273–303, 2001.

3. M. H. t. Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. A state/event-based model-
checking approach for the analysis of abstract system properties. Science of Com-
puter Programming, 76(2):119 – 135, 2011.

4. G. Behrmann, K. G. Larsen, H. R. Andersen, H. Hulgaard, and J. Lind-Nielsen.
Verification of hierarchical state/event systems using reusability and composition-
ality. Formal Methods in System Design, 21(2):225–244, 2002.

5. J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1-3):109–137, 1984.

6. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Advances in Computers, 58:118–149, 2003.

7. J. Blom, A. Hessel, B. Jonsson, and P. Pettersson. Specifying and generating test
cases using observer automata. In Proc. Formal Approaches to Software Testing
(FATES’04), volume 3395 of Lecture Notes in Computer Science, pages 125–139,
2005.

8. S. Blom, J. van de Pol, and M. Weber. LTSmin: Distributed and symbolic reach-
ability. In Computer Aided Verification, 22nd Int. Conf., CAV 2010, Edinburgh,
UK, July 15-19, 2010., volume 6174 of Lecture Notes in Computer Science, pages
354–359. Springer, 2010.

9. G. Ciardo, G. Lüttgen, and A. S. Miner. Exploiting interleaving semantics in
symbolic state-space generation. Formal Methods in System Design, 31(1):63–100,
2007.

10. A. Cimatti, F. Giunchiglia, G. Mongardi, D. Romano, F. Torielli, and P. Traverso.
Formal verification of a railway interlocking system using model checking. Formal
Aspects of Computing, 10(4):361–380, 1998.

11. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of the ACM,
50(5):752–794, 2003.

12. W. Damm, B. Josko, A. Pnueli, and A. Votintseva. A discrete-time UML seman-
tics for concurrency and communication in safety-critical applications. Science of
Computer Programming, 55:81–155, 2005.

13. L.-H. Eriksson. Specifying railway interlocking requirements for practical use. In
Proceedings of the 15th International Conference on Computer Safety, Reliability
and Security (SAFECOMP’96). Springer, 1996.

14. W. Fokkink. Safety criteria for the vital processor interlocking at Hoorn-
Kersenboogerd. In 5th Conference on Computers in Railways (COMPRAIL’96).
Volume I: Railway Systems and Management, 1996.

Automated Verification of Executable UML Models 25

15. Formal Systems (Europe) Ltd. Failures-divergence refinement: FDR2 User Manual,
2010.

16. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A toolbox for the
construction and analysis of distributed processes. In Proc. of the 17th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2011), volume 6605 of Lecture Notes in Computer Science, pages 372–387. Springer,
2011.

17. M. Geilen. On the construction of monitors for temporal logic properties. Electr.
Notes in Theor. Comp. Sci., 55(2), 2001.

18. M. Ghazel, A. Toguyéni, and P. Yim. State observer for DES under partial ob-
servation with timed petri nets. Discrete Event Dynamic Systems, 19(2):137–165,
2009.

19. S. Gnesi, D. Latella, G. Lenzini, C. Abbaneo, A. M. Amendola, and P. Marmo. An
automatic SPIN validation of a safety critical railway control system. In Proceed-
ings of the 2000 Int. Conf. on Dependable Systems and Networks, pages 119–124,
Washington, DC, USA, 2000. IEEE Computer Society.

20. G. Graw and P. Herrmann. Transformation and verification of Executable UML
models. In Proceedings of the Workshop on the Compositional Verification of UML
Models, volume 101 of Electr. Notes in Theor. Comp. Sci., pages 3–24, 2004.

21. J. F. Groote, A. Mathijssen, M. A. Reniers, Y. S. Usenko, and M. van Weerdenburg.
The formal specification language mCRL2. In Methods for Modelling Software
Systems, volume 06351 of Dagstuhl Seminar Proceedings, 2007.

22. H. H. Hansen, J. Ketema, B. Luttik, M. R. Mousavi, and J. van de Pol. Towards
model checking Executable UML specifications in mCRL2. Innovations in Systems
and Software Engineering, 6(1-2):83–90, 2010.

23. F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende. Derivation and
refinement of textual syntax for models. In Proceedings of the European Confer-
ence on Model-Driven Architecture - Foundations and Applications (ECMDA-FA),
volume 5562 of Lecture Notes in Computer Science, pages 114–129. Springer, 2009.
See also http://www.emftext.org (last visit: 4 July 2011).

24. T. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
25. G. J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.
26. ISO/IEC. Enhancements to Lotos (E-Lotos), 2001. International Standard

15437:2001.
27. ISO/IEEE. ISO/IEEE 11073-20601: Health infomatics — personal health device

communication — Part 20601: Application profile — optimized exchange protocol,
Apr. 2010.

28. J. Keiren. Modelling session setup of IEEE Std 11073-20601, 2011. Personal
communication.

29. KnowGravity. Cassandra/xUML User’s Guide, 2008.
30. D. Kolovos. An Extensible Platform for Specification of Integrated Languages for

Model Management. PhD thesis, University of York, United Kingdom, 2009. See
also http://www.eclipse.org/gmt/epsilon/ (last visit: 4 July 2011).

31. D. Kolovos, L. Rose, and R. Paige. The Epsilon Book. Available online at: http:
//www.eclipse.org/gmt/epsilon/doc/book/ (last visit: 4 July 2011).

32. S. Lafortune, D. Teneketzis, M. Sampath, R. Sengupta, and K. Sinnamohideen.
Failure diagnosis of dynamic systems: an approach based on discrete event systems.
In Proceedings of the American Control Conference, vol. 3, pages 2058–2071, 2001.

33. J. Lind-Nielsen, H. R. Andersen, H. Hulgaard, G. Behrmann, K. J. Kristoffersen,
and K. G. Larsen. Verification of large state/event systems using compositionality
and dependency analysis. Formal Methods in System Design, 18(1):5–23, 2001.

26 Helle Hvid Hansen et al.

34. A. Mekki, M. Ghazel, and A. Toguyeni. Time-constrained systems validation us-
ing MDA model transformation. A railway case study. In Proceedings of the 8th
International Conference of Modeling and Simulation (MOSIM’10), 2010.

35. S. J. Mellor and M. Balcer. Executable UML: A foundation for model-driven ar-
chitecture. Addison Wesley, 2002.

36. Object Management Group. OMG Unified Modeling Language Superstructure
Version 2.2, Feb. 2009.

37. Papyrus Developers. Papyrus: Open source tool for graphical UML2 modelling.
http://www.papyrusuml.org (last visit: 4 July 2011).

38. F. B. Schneider. Enforceable security policies. ACM Transactions on Information
and Systems Security, 3(1):30–50, 2000.

39. M. Sheeran and G. St̊almarck. A tutorial on St̊almarcks’s proof procedure for
propositional logic. In Proceedings of the 2nd Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD ’98), volume 1522 of Lecture Notes in Computer
Science, pages 82–99. Springer, 1998.

40. M. Sighireanu. LOTOS NT user’s manual. Technical report, INRIA Rhône-
Alpes/VASY, 2008.

41. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, Boston, Massachusetts, 2008. See also
http://www.eclipse.org/modeling/emf/ (last visit: 4 July 2011).

42. E. Turner, H. Treharne, S. Schneider, and N. Evans. Automatic generation of
CSP ‖ B skeletons from xUML models. In Proceedings of Theoretical Aspects of
Computing (ICTAC 2008), pages 364–379, 2008.

43. K. Winter and N. J. Robinson. Modelling large railway interlockings and model
checking small ones. In ACSC ’03: Proceedings of the 26th Australasian Comp.
Sci. conference, pages 309–316. Australian Computer Society, Inc., 2003.

44. W. L. Yeung, K. R. P. H. Leung, J. Wang, and W. Dong. Improvements towards
formalizing UML state diagrams in CSP. In Proceedings of the 12th Asia-Pacific
Software Engineering Conference (APSEC 2005). IEEE Computer Society, 2005.

