
Fundamenta Informaticae XXI (2001) 1001–1027 1001

DOI 10.3233/FI-2016-0000

IOS Press

Computing with Infinite Terms and Infinite Reductions

Jeroen Ketema∗

Department of Computing, Imperial College London

London, United Kingdom

Jakob Grue Simonsen
Department of Computer Science, University of Copenhagen (DIKU)

Copenhagen, Denmark

Abstract. We define computable infinitary rewriting by introducing computability to the study
of strongly convergent infinite reductions over infinite first-order terms.

Given computable infinitary reductions, we show that descendants and origins—essential to prov-
ing fundamental properties such as compression and confluence—are computable across such
reductions.

Keywords: Infinitary term rewriting, computability, descendants, origins, needed reductions

1. Introduction

In term rewriting—where terms and rule sets are finite—issues concerning computability pertain only
to advanced properties such as deciding whether a term has a normal form. Most proofs of standard
properties in term rewriting are constructive: if a proof states that some object exists (e.g., a normal
form, or a common reduct of two reductions starting from the same term), then the object can usually
be constructed directly from a number of inputs. In other words, the proof can be converted into a
program that outputs the object when given appropriate inputs. As an example of this, consider the

∗Jeroen Ketema contributed to this work while at Imperial College London. He is currently at ESI (TNO), the Netherlands.

1002 J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions

plethora of proofs collected in [1] showing confluence of orthogonal rewrite systems; each of the
proofs gives rise to a program that, on input of a peak t ∗← s→∗ t′, outputs a valley t→∗ s′ ∗← t′.

In infinitary rewriting, in contrast, even basic constructs such as terms and reductions may fail to
be computable. Proofs of standard properties are also rarely constructive, e.g., no constructive proofs
are known showing confluence of orthogonal, non-collapsing infinitary rewriting systems, although
several non-constructive proofs exist.

We believe the above discrepancy between ordinary and infinitary rewriting to be at odds with the
original reasons for introducing infinitary rewriting, namely, as an extension of ordinary rewriting, and
we aim to reduce the discrepancy by introducing computable infinitary rewriting.

Failure of the Usual Proof Methods To obtain a robust definition of computable infinitary rewrit-
ing, we need to understand why the usual proof methods employed in infinitary rewriting fail to be
constructive. To this end, consider the de facto standard form of infinitary rewriting utilising strong
convergence—a syntactic constraint on the depth of rewrite steps in reductions. A cursory glance at
the literature on strong convergence reveals that almost all proofs depend on the ability to know from
which point in a reduction onward all steps occur below a certain depth. Unfortunately, as we will
show in Section 5, there is demonstrably no constructive way to determine such points.

We circumvent the failure of the usual proof methods by careful analysis of reductions and by
requiring information about the convergence of reductions to be explicit through the notion of a com-
putable modulus of convergence, a concept well-known from computable analysis [2].

Contributions We provide an account of computability of infinite terms, infinitary term rewriting
systems, and strongly convergent transfinite reductions. Our methods allow for reductions of any
computable ordinal length (i.e., of any length strictly less than the Church-Kleene ordinal ωCK

1). We
give a range of examples of computable infinitary rewriting and computable reductions.

Based on the introduced notion of computable infinitary rewriting, we show that sets of descen-
dants and origins, tracking redexes forward and backward across reductions, respectively, are com-
putable. Descendants and origins are fundamental to proofs of basic properties such as compression
and confluence and, hence, showing computability of these notions forms a critical step towards ob-
taining further constructive results.

We believe all our constructions to be completely non-controversial: they use classical computabil-
ity theory (including computable ordinals) straightforwardly, and our notion of a computable infinite
reduction is, hence, robust. The primary, and non-trivial, technical difficulties consist of proving that
the defined notions have desirable properties, i.e., in providing suitably constructive proofs.

2. Related Work

Infinitary rewriting was introduced as an extension of ordinary rewriting that (i) allows for structures
that, in theory, are infinite (e.g., lazy data structures such as streams [3] and sentences in infinitary
logic [4]), and (ii) allows for infinite reductions over the infinite structures (enabling, e.g., iteration
through every element of an infinite list).

J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions 1003

Infinitary analogues of many standard results from finitary first-order term rewriting have been
shown to hold for strongly convergent infinitary rewriting. Major landmarks include confluence of
(almost non-collapsing) orthogonal systems [5], modularity [6, 7], and normalisation [8, 9]. Similar
results have been established for higher-order systems [10, 11, 12, 13, 14] and term graph rewriting
[15, 16]. Several attempts have also been made at providing abstract foundations [17, 18, 19].

From a computability perspective, our work relates to a line of research that considers rewriting
of rational terms (infinite terms with a finite number of syntactically distinct subterms), as rational
terms can easily be represented finitely (see Example 4.7), e.g., using µ-terms. Employing a µ-term
representation, [20] describes a two-phase approach to rewriting of rational terms: during each rewrite
step (i) the representation of the rational term is changed, and (ii) a rewrite rule is applied to a subterm
not below a µ. In [21, 22] parallel rewriting of rational terms is discussed, where the set of positions
of redexes being rewritten is also rational. None of the aforementioned works explicitly discusses
computability. In the setting of rational terms, computability issues seem to have been raised only
in [23], which discusses a combination of the two-phase approach and the parallel rewriting approach.

Also related to our work is the line of research that tries to provide formalisations of infinitary
rewriting in proof assistants based on constructive logics. An early formalisation is [24] that uses Coq
to formalise Kahrs’ transfinite reductions satisfying adherence [18] (a much weaker notion than strong
convergence, only requiring the terms along a reduction to be eventually always close to the limit of
the reduction). The formalisation in [24] stops short of proving any fundamental properties.

In [25], the authors employ a coinductive approach to define both infinite terms and infinite reduc-
tions, providing Coq formalisations of some of their constructions, notably a version of the Compres-
sion Lemma (relating any reduction of countable ordinal length to an equivalent reduction of length at
most ω). The formalisation allows for terms to be defined using coinduction, and infinite reductions
to be defined using mixed induction and coinduction. While this approach is general and elegant,
and a viable setting for studying computable terms and reductions, establishing precise connections
to computability theory remains to be done and may require adding further axioms (e.g., a version
of Markov’s Principle and the (recursive) countability of the set of partial functions on the natural
numbers). We conjecture that doing so is indeed possible, and furthermore that a computable proce-
dure can be extracted from the proof of the Compression Lemma of [25] that would allow computably
strongly convergent reductions (in the sense of the present paper) of any countably ordinal length to
be converted to computably strongly convergent reductions of length at most ω. However, we believe
this to be out of the scope of our present work.

3. Preliminaries

We assume acquaintance with ordinary term rewriting (see, e.g., [26, 27, 28]), and with computability
theory, in particular with Turing machines and the partial functions they compute (see, e.g., [29, 30,
31, 32]). We do not presuppose familiarity with infinitary rewriting, but a working knowledge of the
subject will make the paper easier to read. For background on infinitary rewriting see [33].

Throughout the paper N = {0, 1, 2, 3, . . .} denotes the set of non-negative integers, Nk (for k ∈ N)
denotes the k-ary Cartesian product over non-negative integers, and N∗ =

⋃
n∈NNk denotes the set of

a finite strings over non-negative integers, with ε the empty string. We write p · q for the concatenation

1004 J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions

of p, q ∈ N∗, and we denote the length of p ∈ N∗ by |p|. We say that p ∈ N∗ is a prefix of q ∈ N∗,
denoted p ≤ q, if there exists a p′ ∈ N∗ with p · p′ = q, and write p < q when p′ 6= ε. Furthermore,
we say that p, q ∈ N∗ are parallel, denoted p ‖ q, if neither p ≤ q nor q ≤ p.

Unless stated otherwise, all Turing machines are multi-tape Turing machines with binary input,
output, and worktape alphabets. For every n ∈ N, we denote by 〈n〉 its standard binary encoding.
Given a Turing machine M , we write ϕM for the partial function with domain and range N computed
by M , i.e., if M halts on input 〈n〉 with output 〈m〉, then ϕM (n) = m, and ϕM (n) is undefined
otherwise. Recall that a partial function ϕ : N −→ N is computable if ϕ is computed by some Turing
machine M .

We assume a fixed computable bijection from the set of Turing machines to N, and denote the
element of N assigned to a Turing machine M under this bijection by 〈M〉. We also assume a fixed
computable bijective pairing function from N×N to N and a fixed computable bijective function from
N∗ to N (see, e.g., [31, Section 5.6]). Recall that a set A ⊆ N is recursively enumerable (r.e.) if there
exists a total computable function ϕM : N −→ N with ϕM (N) = A. Likewise, the set A is recursive
if there exists a total computable function ϕM : N −→ {0, 1} such that ϕM (n) = 1 iff n ∈ A.1

Observe that we can use our assumed fixed computable bijective pairing function from N × N to
N to naturally extend r.e. sets and recursive sets to subsets of any Cartesian product Nk.

4. Computable Infinite Terms and Substitutions

We begin by defining computable infinite terms and computable substitutions. This task requires all
standard concepts from infinitary rewriting to be investigated for computability. We start from the
basics with signatures and variables.

Definition 4.1. A signature is any set

Σ = {(f0, n0), (f1, n1), . . .}

with fi a function symbol and ni ∈ N the arity of fi for all i ∈ {0, 1, . . .}, such that each function
symbol fi occurs at most once as the first component of a pair in Σ.

We generally suppress the arities of function symbols in signatures Σ, and simply say that a symbol
f occurs in Σ, writing f ∈ Σ. If Σ is a signature and the set {f1, f2, . . .} is countable, then we may
assume that all fi are coded by their index i and, hence, that Σ ⊆ N× N. This leads to the following:

Definition 4.2. A signature Σ is recursively enumerable (r.e.), if Σ ⊆ N× N and Σ is an r.e. set.

Note that we could have alternatively defined ‘computable’ signatures as partial computable func-
tions ϕM : N −→ N × N with recursive domain. We have chosen not to, as this runs counter to the
way signatures are normally defined in term rewriting.

1In the literature, r.e. is sometimes called semi-decidable or computably enumerable, and recursive is sometimes called
decidable, effective, or computable.

J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions 1005

Variables We assume a countable, infinite set of variables V = {x0, x1, . . .}. By fixing the order
of the elements in V and by identifying each variable with its index in this order, we can assume V
to be N, but for readability, we write variables as x, y, z, and so forth. By our assumptions on V , we
have for any r.e. signature Σ that Σ ∪ V is r.e., and that it is decidable whether an element x ∈ Σ ∪ V
originates from either Σ or V (by re-coding the representations of Σ and V if need be).

Computable Infinite Terms There are at least four equivalent ways [34, 25] to define infinite terms:
by metric completion, by ideal completion, by employing partial functions, and by coinduction (these
all define the same set of infinite terms, but offer different flexibilities [34]). Of these definitions, we
find the definition by partial functions most easily amenable to computability, due to the emphasis on
partial functions in classical recursion theory. The definition is as follows:

Definition 4.3. The set of (finite and infinite) terms over a signature Σ and a set of variables V is the
set of all partial functions t : N∗ −→ Σ ∪ V such that t(ε) is defined and such that for each p ∈ N∗:
• if t(p) is defined, then t(q) is defined for all q < p;

• if t(p) ∈ Σ, then t(p · i) is defined for all 0 ≤ i < n with n the arity of t(p), and t(p · i) is
undefined otherwise;

• if t(p) ∈ V , then t(q) is undefined for all q > p.

The domain over which a function (or term) t is defined is denoted by Pos(t) and the elements
from the domain are called positions. A term t is finite iff Pos(t) is finite.

Observe that a term is finite in the sense of the above definition iff it is finite in the usual sense.
Moreover, it is clear that every finite term over an r.e. signature can be encoded as an element of N and
that the set of finite terms is an r.e. set.

An intuitive way to think about computable infinite terms over an r.e. signature is as follows: a term
t is computable if there exists a Turing machine which on input of a position p outputs the function
symbol at that position if p is a position of the term, and outputs an error message or a similar value
representing ‘undefined’ otherwise. Formally:

Definition 4.4. The set of computable terms over an r.e. signature Σ and a set of variables V is the set
of all terms t over Σ and V such that t is computable as a partial function.

An immediate consequence of Definition 4.4 is that every finite term is a computable term. We
can also represent every computable term t by a natural number via the encoding 〈M〉 of the Turing
machine M associated with t.

We now give some examples of computable infinite terms:

Example 4.5. Let the function symbols f and h have arities 1 and 2, respectively. The infinite terms
represented by the recursion equations s = f(s) and t = h(t, t) (see also Figure 1) are computable.
To see this, observe that the sets of positions {0}∗ ⊆ N∗ and {0, 1}∗ ⊆ N∗ are recursive and define:

s(p) =

{
f if p ∈ {0}∗

⊥ otherwise
t(p) =

{
h if p ∈ {0, 1}∗

⊥ otherwise

1006 J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions

f h

f h h

f h h h h

Figure 1. The computable terms from Example 4.5

Example 4.6. Let : (‘cons’) be a function symbol of arity 2 and let 0 and 1 be function symbols both of
arity 0. Writing : in infix notation, we may consider all infinite terms of the form s1 : (s2 : (s3 : · · ·))
with s1, s2, s3, . . . ∈ {0, 1}. The set of positions of each of these terms is {q, q · 0 | q ∈ {1}∗} ⊆ N∗,
which is easily seen to be a recursive set.

The term s = 0 : (0 : (0 : · · ·)), consisting of all 0s, and the term t = 1 : (1 : (1 : · · ·)),
consisting of all 1s, are clearly computable by the following functions:

s(p) =

0 if p ∈ {q · 0 | q ∈ {1}∗}
: if p ∈ {q | q ∈ {1}∗}
⊥ otherwise

t(p) =

1 if p ∈ {q · 0 | q ∈ {1}∗}
: if p ∈ {q | q ∈ {1}∗}
⊥ otherwise

Example 4.7. Denote by t|p the subterm of t at position p (see also Definition 4.12) and recall that an
infinite term t is rational if the set {t′ | ∃p ∈ Pos(t).t′ = t|p} is finite, i.e., if the set of syntactically
distinct subterms of t is finite. Examples of rational terms are the two terms of Example 4.5, as are the
terms (0 : (0 : (0 : · · ·))) and (1 : (1 : (1 : · · ·))) of Example 4.6.

It is easy to see that every rational term t is computable: recall from, e.g., [35], that rational terms
are representable by finite systems of regular equations St = {(x0, t0), (x1, t1), . . . , (xn, tn)}, with
each xi unique and each ti a finite term, such that x0 is the ‘start’ variable, i.e., a copy of t0 occurs
at the root of the rational term. Given St, there is an obvious top-down algorithm that computes the
function symbol at each position p: the algorithm only needs to store the elements of St in a table and
trace the path from the root of t0 as defined by p. Once a variable is encountered, the algorithm looks
up the corresponding term in the table (if it exists) and continues to trace along that term (and so on,
recursively).

The existence of uncomputable infinite terms is immediate: given a finite signature Σ with two
symbols of arity ≥ 1, there are uncountably many distinct infinite terms, while only countably many
distinct partial computable functions exist. The following example exhibits an uncomputable term.

Example 4.8. Let f and g both have arity 1, and consider any uncomputable total function ϕ : N −→
{0, 1} (e.g., ϕ(〈M〉) = 1, respectively ϕ(〈M〉) = 0, if, on empty input, the Turing machine M halts,
respectively does not halt). Let the domain of t be {0}∗ ⊆ N∗, and let t(p) = f , if ϕ(|p|) = 0, and
t(p) = g, if ϕ(|p|) = 1. Although Pos(t) is recursive, it is not possible to compute which symbol
occurs at which position (otherwise ϕ would be computable).

J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions 1007

Remark 4.9. A computable infinite term has a natural representation as an infinite tree. However,
this tree may fail to have any computable infinite path. Consider a signature Σ with h of arity 2 as
its sole function symbol and observe that any finite or infinite binary tree may be realised as a (finite
or infinite) term over Σ (nodes are occurrences of h, leaves are variables). An infinite path of an
infinite term t over Σ is any infinite sequence i1 · i2 · · · with ij ∈ {0, 1} such that the finite sequence
i1·i2 · · · in−1·in is a position of t for each n. An infinite path is computable if there exists a computable
function ϕM : N → {0, 1} such that ϕM (j) = ij for each j. By the classic construction called the
‘Kleene tree’ [36, 37], it is now immediate that there exists a computable infinite term t over Σ such
that t has an infinite number of positions but no infinite computable paths.

Observe that Remark 4.9 implies that we cannot have a ‘computable’ König’s Lemma. Indeed,
existence of the Kleene tree shows that König’s lemma fails in certain variants of constructive mathe-
matics (but does hold in other variants; see [38] for an overview).

Computable Substitutions We define computable substitutions. We limit ourselves to substitutions
with finite domains. The restriction to finite domains suffices below because of the usual restriction in
infinitary rewriting that all rules have finite left-hand sides.

Definition 4.10. A substitution (with finite domain) is a finite set of pairs

σ = {(x0, t0), . . . , (xm, tm)}

with xi a variable and ti a term for every i ∈ {0, . . . ,m}, such that each variable xi occurs at most
once as the first component of a pair in σ. A substitution is computable if ti is a computable term for
every i ∈ {0, . . . ,m}.

Just as computable terms are terms in the usual sense, computable substitutions are substitutions
in the usual sense. We can represent each element of a computable substitution by a natural number
by (i) representing ti as a natural number, as explained immediately below Definition 4.4, and by (ii)
applying a computable pairing operation to pair ti with xi. Consequently, we can also represent a
computable substitution by a natural number: simply apply a computable mapping from N∗ to N.

Applying a substitution σ to an infinite term t yields a well-defined infinite term σ(t) [5, 33].
Naturally, if both t and σ are computable, we would like σ(t) to be computable. In fact, we would like
σ(t) to be uniformly computable: there should exist a Turing machine that, on input (of representations
of) t and σ, yields (a representation of) σ(t). The existence of such a Turing machine is witnessed
by the following lemma. In the lemma, and also in any further statements regarding Turing machines
with certain behaviour, we assume both in- and output to be encoded as elements of N; this is possible
for terms and substitutions as explained above, and for combinations thereof by use of a suitable
computable pairing operation.

Lemma 4.11. There exists a Turing machine M with the following behaviour:

Input – a computable term t and a computable substitution σ;

Output – a Turing machine N that computes σ(t).

1008 J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions

Proof:
Observe that it is decidable whether x ∈ Dom(σ), as σ has finite domain. Let the Turing machine N
for each p ∈ N∗ trace the path from the root of t as defined by p. If a variable x ∈ Dom(σ) is found
at a position q such that q · q′ = p, then output σ(x)(q′), otherwise output t(p). ut

Hence, if t is a computable infinite term and σ is a computable substitution, then σ(t) is a com-
putable infinite term.

Subterms and Contexts We now define subterms and contexts.

Definition 4.12. Let t be a term and p ∈ Pos(t). The subterm t|p at position p is defined as t|p(q) =
t(p · q) for each q ∈ N∗.

A one-hole context C[�] is a term over Σ and V ∪ {�} such that precisely one � (the ‘hole’)
occurs in C[�]. A one-hole context C[�] is computable if the term C[�] is computable. Given a
substitution σ = {(�, t)}, C[t] denotes σ(C[�]).

Do not conflate t|p and t(p): the former denotes a function such that for each q ∈ N∗ we have
t|p(q) = t(p · q), whereas the latter denotes the symbol at position p ∈ N∗ in t (if any). We have:

Proposition 4.13. There exists a Turing machine M with the following behaviour:

Input – a computable term t and a position p ∈ Pos(t);

Output – a Turing machine N that computes t|p.

Proof:
Let N for each q ∈ N∗ compute p · q (which is possible as p and q are finite) and output t(p · q). ut

Hence, if t is a computable term and p ∈ Pos(t), then t|p is a computable term. The behaviour of
M in Proposition 4.13 on ‘illegal’ inputs, i.e., where p is not a position of t, is unspecified; whether the
Turing machine returns a result or not, and what that result is, does not affect the technical development
or proofs in any way.

5. Computable Rewrite Rules and Systems

We next define computable rewrite rules. We follow the standard definitions [5, 33], but as before
insert notions from computability theory where needed.

Definition 5.1. An infinitary rewrite rule is a pair of terms (l, r), invariably written l → r, such that
l is finite with l /∈ V , and such that each variable that occurs in r also occurs in l. A rewrite rule is
computable if r is a computable term.

Observe that left-hand sides of rules are always computable because they are finite, and can thus
be represented by natural numbers. Consequently, as we can also represent each computable term
by a natural number (see immediately below Definition 4.4), the existence of a computable pairing
operation implies that computable rewrite rules can be represented by natural numbers.

J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions 1009

Remark 5.2. As with all other definitions in this paper involving computability, the onus is on the
person defining a computable rewrite rule to check that all requirements from the definition are met
(by providing proofs). For example, a proof must be provided showing that the left-hand side is finite,
as our very liberal definition of computable terms entails that it is undecidable in general whether
finiteness holds. Observe that in all papers on infinitary rewriting, except one2, rules are always
given by explicitly writing down finite representations of terms, which makes the rules obviously
computable.

One-step rewriting is uniformly computable given the applied rule and position at which the rule
is applied:

Lemma 5.3. There exists a Turing machine M with the following behaviour:

Input – a computable term t and a pair (p, l → r), with p ∈ Pos(t) and l → r a computable rewrite
rule, such that t = C[σ(l)] for a context C[�] and a substitution σ with C[�]|p = �;

Output – a Turing machine N that computes C[σ(r)].

Proof:
Let N compute σ by considering every q ∈ Pos(l) and adding a pair (l(q), t|p·q) to σ for every
l(q) ∈ V . Observe that t|p·q is computable by Proposition 4.13. Note that, for every q and q′ with
l(q) = l(q′) ∈ V , we have by definition of the input that t|p·q = t|p·q′ . Hence, as l is a finite term, σ
can be computed in finite time. Now, for each q ∈ N∗, if q ‖ p or q < p, let N output t(q), otherwise,
if q = p · p′ for some p′ ∈ N∗, let N output σ(r)(p′), where σ(r) is computable by Lemma 4.11. It is
computable whether q ‖ p, q < p, or q = p · p′, as p and q are finite. ut

Following again the standard definitions [5, 33] and inserting notions from computability theory
where needed, we define infinitary rewriting systems.

Definition 5.4. An infinitary term rewriting system (iTRS) R is a set of infinitary rewrite rules. An
iTRS is recursively enumerable (r.e.) if it has an r.e. set of computable infinitary rewrite rules.

We employ r.e. iTRSs throughout the following. The restriction to r.e. iTRSs helps to ensure that
every time we prove a computability result related to iTRSs, we will be able to prove that the result is
uniformly computable. Uniform computability requires a suitable, finite representation of each input
and output, and the most straightforward way to ensure this in the case of iTRSs is by assuming that
rule sets are r.e. (i.e., that rule sets are representable by Turing machines enumerating the rules).

Observe that rule sets being r.e. is insufficient to ensure decidability of the deceptively simple
problem of checking whether the topmost part of a term (up to some fixed depth k) contains a redex.
If the rule sets were recursive and left-linear (see below), then the problem would be decidable (for
every fixed k), but no result below depends on this.

2The exception is [39] where function symbols of infinite arity are considered. However, in [39], right-hand sides are
constructed by induction, not co-induction, and, hence, each path through the tree-representation of a right-hand side of a
rule is finite. In contrast, right-hand sides of rules in infinitary term rewriting systems allow for infinite paths.

1010 J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions

Left-Linear Rules and Systems We employ the following common restriction on rules and iTRSs.

Definition 5.5. A rewrite rule l → r is left-linear if each variable occurs at most once in l. An iTRS
is left-linear if all its rules are.

Looking back at Lemma 5.3, observe that it is undecidable in general whether a term t is equal to
C[σ(l)] and, hence, whether a specific non-left-linear rule can be applied at a specific position in t.
The lemma circumvents the issue by requiring a ‘witness’ of t = C[σ(l)]. Thus, the Turing machine
M from the lemma does not need to check for equality.

A witness of t = C[σ(l)] is not required in the case of left-linear rules, because each variable
occurs at most once. Hence, it is easy to see that for left-linear r.e. iTRSs the set of redexes of
a computable term is also an r.e. set. Notwithstanding, even for left-linear systems it is generally
undecidable whether a term is in normal form.

6. Computable Infinite Reductions

We next define computable infinite reductions. We start by recalling the standard definition of strongly
convergent reductions [5, 33]:

Definition 6.1. Given an iTRSR, a strongly convergent reduction of ordinal length α overR, denoted
t0 �R tα, is a sequence of terms (tβ)β<α+1 together with a sequence of steps (pβ, lβ → rβ)β<α
where lβ → rβ ∈ R, tβ = Cβ[σβ(lβ)]→ Cβ[σβ(rβ)] = tβ+1, and Cβ[�]|pβ = �, such that for every
limit ordinal β ≤ α and n ∈ N there exists a γn < β with tδ(q) = tβ(q) and |pδ| > n for all q ∈ N∗,
|q| < n, and γn ≤ δ < β.

If a reduction t0 �R tα has finite length, then we also denote the reduction by t0 →∗ tα.

Computable Ordinals To obtain a computability-theoretic version of Definition 6.1, we employ
computable ordinals (for an in-depth account of computable ordinals, see, e.g., [31]).

Definition 6.2. Let α be an ordinal and A ⊆ N. A binary relation R over A is of order type α if there
exists a bijection between A and α such both the bijection and its inverse are order preserving.

An ordinal α is computable (or recursive) if there exists an r.e. set A ⊆ N and a decidable binary
relation over A that well-orders A with order type α.

Examples of computable ordinals are any finite ordinal, ε0 = lim{ω, ωω, ωωω , . . .}, any ordinal
written as an arithmetic expression over successors and ω (e.g., ωω +1), the Feferman-Schütte ordinal
Γ0, and the small and large Veblen ordinals φΩω(0) and φΩΩ(0) [40]. All computable ordinals are
countable; the least uncomputable ordinal, the Church-Kleene ordinal ωCK

1 , is also countable [31].
Although the computability-theoretic version of Definition 6.1 only depends on computable ordi-

nals as defined above, obtaining further results requires representations of computable ordinals α that
also allow us to (i) compute for each β < α if β is either 0, a successor ordinal, or a limit ordinal,

J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions 1011

(ii) compute the predecessor of every successor ordinal, and (iii) decide for every β, γ < α whether
β < γ. To this end we employ univalent, recursively related systems of notation [41, 31].3

Definition 6.3. Let α be an ordinal. A system of notation S for α is a function νS : D −→ α with
D ⊆ N such that the following Turing machines exist:

• Mk, computing the ordinal kind, such that (a) if νS(n) = 0, then ϕMk
(n) = 0, (b) if νS(n) is a

successor ordinal, then ϕMk
(n) = 1, and (c) if νS(n) is a limit ordinal, then ϕMk

(n) = 2;

• Mp, computing predecessors, such that if νS(n) is a successor ordinal, then ϕMp(n) is defined
and νS(n) = νS(ϕMp(n)) + 1;

• Mq, computing limits, such that if νS(n) is a limit ordinal, then ϕMq(n) is defined, say as 〈M ′〉,
with ϕM ′ total, and

νS(ϕM ′(0)), νS(ϕM ′(1)), . . . , νS(ϕM ′(i)), . . .

an increasing sequence whose limit is νS(n).

A system of notation S is univalent if νS is injective and it is recursively related if the set of pairs
RS = {(m,n) | m, n ∈ D ∧ νS(m) ≤ νS(n)} is decidable.

Remark 6.4. Given a univalent, recursively related system of notation S for an ordinal α, we can
compute the unique element of D representing 0, and the unique successor of every ordinal (if the
successor is < α).

For the element representing 0, compute ϕMk
(n) in parallel for all n ∈ N recording the elements

z such that ϕMk
(z) = 0. For each recorded z, use a Turing machine deciding RS to decide whether

(z, z) ∈ RS (at least one such element exists for all ordinals α > 0, otherwise 0 would not have a
representation). As soon as one element (z, z) ∈ RS is found, we know that z ∈ D. We claim that
νS(z) = 0; to see this, observe that if νS(z) is a successor or a limit ordinal, then ϕMk

(z) ∈ {1, 2}, a
contradiction. By univalence of S it now follows that z is the unique element of D representing 0.

For the successor, recursive relatedness implies that for each m ∈ D we can enumerate all n ∈ N
such that (m,n) ∈ RS , and using Mk we can establish whether such an n is a successor ordinal. By
univalence, the predecessor of n is unique, and we can compute it using Mp. If ϕMp(n) = m, then
we have found the successor of m, which is again unique by univalence.

The following is standard [41, 31]:

Theorem 6.5. For every computable ordinal there exists a univalent, recursively related system of
notation.

Hence, without loss of generality we may use univalent, recursively related systems of notation.
An example of a system of notation is Kleene’s system O [41, 31]. The system O is univalent

but not recursively related. For ‘small’ computable transfinite ordinals, univalent, recursively related
systems can be easily specified, e.g., by using the Cantor normal form notation for ordinals up to ε0
and encoding the normal forms by finite trees or lists of pairs in the usual way [31, 42].
3The name system of notation is taken from [31]. In [41] these systems are called r-systems.

1012 J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions

a f

f

a

a

g

g

g

g

g

a f

a a

g g

g

g

g

f

φ(0) φ(1)

ρ(0) =
(ε, a → f(a))

ρ(1) =
(1, a → f(a))

ρ(2) =
(ε, f(x) → g(x))

ρ(3) =
(1, f(x) → g(x))

ρ(4) =
(11, a → f(a))

f

ρ(5) =
(111, a → f(a))

Figure 2. A computably strongly convergent reduction. Note that we have two computable functions: a func-
tion ρ computing each rewrite step, and a function ϕ computing a modulus of convergence for the reduction.
The function ρ(n) yields the nth rewrite step, whereas ϕ(n) yields an ordinal such that all steps from the ϕ(n)th
step onward will occur below depth n (above, ϕ(0) and ϕ(1) point to the left-hand sides of such steps). Observe
that ϕ(n) does not have to yield the minimum step from which point onward all steps occur below depth n
(above, ϕ(1) could have been placed one term further to the left).

Remark 6.6. Given a system of notation for an ordinal α, there exists a Turing machine M that on
input β < α outputs the largest limit ordinal smaller than or equal to β, if it exists, and outputs 0
otherwise. Let M employ Mk to decide the ordinal kind of β. If β is a limit ordinal or 0, then M is
done. Otherwise, β is a successor ordinal, in which case M may use Mp to compute its predecessor
and continue recursively. As there exists no infinite descending chain of ordinals, M eventually halts.

From here onward, we will always work in the context of an explicitly specified computable
ordinal α (typically, the length of a transfinite reduction). In each such context, we assume for α
(or α+ 1, if α is a successor ordinal) a fixed univalent, recursively related system of notation, and all
representations of ordinals β < α that we use in this context will come from the fixed system.

Computable Reductions With the machinery of computable ordinals in hand, defining computably
strongly convergent reductions is now quite straightforward. The only difficulty that arises relates to
requirement that, for each reduction and depth n, we want to be able to compute from which point in
the reduction onward all contracted redexes occur below depth n. In other words, we want the rate of
convergence of reductions to be computable. Unfortunately, as we show in Example 6.12, computing
the rate of convergence is not possible in general.

To mitigate the above issue, we borrow the concept of computable modulus of convergence from
computable analysis [2]. Consider the following strongly convergent reduction of length ω:

a→ f(a)→ f(f(a))→ g(f(a))→ g(g(a))→ g(g(f(a)))→ g(g(f(f(a))))→ · · · gω ,

J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions 1013

employing the rules a → f(a) and f(x) → g(x) (see also Figure 2). The steps of the reduction can
clearly be specified by a computable function:

ρ(β) =

(0k, a→ f(a)) if β = 4k

(0k+1, a→ f(a)) if β = 4k + 1

(0k, f(x)→ g(x)) if β = 4k + 2

(0k+1, f(x)→ g(x)) if β = 4k + 3

It is also possible to construct a computable function which, for every depth n, yields the reduction
step such that from that step onward we have that all steps occur below n:

ϕ(n) =

{
4k + 3 if n = 2k

4k + 5 if n = 2k + 1

The function ϕ is a computable modulus of convergence for the reduction. Although in this case a
modulus is easily computed from ρ, this is not possible in general (see Example 6.12).

Oftentimes we will need to know the rate of convergence when approaching any arbitrary limit
ordinal along a reduction. Thus, a modulus of convergence requires not only a depth argument but also
a limit ordinal argument, and the above example presents a degenerate case, where the limit ordinal
argument is always ω.

Call a computable map from a computable ordinal α to a set S ⊆ N a computable sequence of
ordinal length α over S. We define the following.

Definition 6.7. A proto-computably strongly convergent reduction of ordinal length α over an r.e.
iTRS R is a strongly convergent reduction of computable ordinal length α over R such that (tβ)β<γ
is a computable sequence over computable terms, with γ = α, if α is a limit ordinal, and γ = α + 1
otherwise, and such that (pβ, lβ → rβ)β<α is a computable sequence over steps (p, l→ r) with l→ r
a computable rewrite rule.

A computable modulus of convergence for a strongly convergent reduction of length α is a com-
putable function ϕ : α× N −→ γ, with γ = α, if α is a limit ordinal, and γ = α+ 1 otherwise, such
that for all n ∈ N:

• if γn
.
= ϕ(0, n), then |pδ| > n for all γn ≤ δ < γ, and

• if γn
.
= ϕ(β, n) with β < α a limit ordinal, then γn < β and |pδ| > n for all γn ≤ δ < β.

A pair (s � t, ϕ) consisting of a proto-computably strongly convergent reduction s � t and a
computable modulus of convergence ϕ for s� t is called a computably strongly convergent reduction.

We usually suppress explicit mention of ϕ, referring to s� t as computably strongly convergent.
We will also write s →∗ t for a computably strongly convergent reduction when we can compute its
length and that length is finite. In the case of finite reductions, we assume without loss of generality
that the reduction is encoded by employing our fixed bijection from N∗ to N, where each natural
number in the sequence represents a reduction step. Note that given a finite reduction using the fixed
encoding, we can uniformly compute its length.

1014 J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions

Each computable term tβ of a proto-computably strongly convergent reduction can be represented
by a natural number using the encoding specified immediately below Definition 4.4. Similarly, each
step (pβ, lβ → rβ) can be represented by a natural number: employ a computable pairing operation
and make use of the fact that pβ is finite and that lβ → rβ has a natural number representation
(as explained immediately below Definition 5.1). Hence, we may rightfully talk about computable
sequences when defining proto-computably strongly convergent reductions.

Observe that we do not require the final term tα of a proto-computably strongly convergent re-
duction to be computable if α is a limit ordinal (indeed, in this case tα is not even explicitly given by
the Turing machine computing the sequence of terms). There are two reasons for this. First, given a
computable modulus of convergence ϕ, we can compute tα, as we explain in Remark 6.11. Second,
if tα were given explicitly, one could compute it without considering the initial parts of the reduction
or its converging behaviour, which we believe to be contrary to the common and accepted intuition
regarding infinitary rewriting.

With regard to the modulus of convergence, observe that we only require it to produce correct
results if the first argument is either 0 or a limit ordinal < α. We do not care about the behaviour
of the modulus otherwise. The use of ϕ(0, n), instead of ϕ(α, n), is a technical convenience: it
ensures that we do not need to know the length of the reduction, e.g., when computing the term tα
in Remark 6.11. As explained in Remark 6.4, 0 ∈ α is computable because we assume a univalent,
recursively related system of notation for α.

Example 6.8. Consider the computable terms defined by the recursion equations s = f(s) and t =
g(t) (see also Example 4.5), and consider the rule f(x) → g(x), which is computable as both sides
are finite. We have the following strongly convergent reduction of length ω, contracting the outermost
redex in each step:

s→ g(s)→ g(g(s))→ · · · → gn(s)→ gn+1(s)→ · · · t ,

The reduction is obviously proto-computable and has a computable modulus of convergence ϕ with
ϕ(0, n) = n+ 1.

Example 6.9. Expanding on the previous example, consider the terms defined by the recursion equa-
tions s = f(s), t = g(t), u = h(u), and consider the rules f(x)→ g(x) and g(x)→ h(x). We have
the following strongly convergent reduction of length ω · 2 that starts by repeatedly contracting outer-
most f -redexes until no such redex is left, and by then repeatedly contracting outermost g-redexes:

s→ g(s)→ g(g(s))→ · · · → gn(s)→ gn+1(s)→ · · ·
t→ h(t)→ h(h(t))→ · · · → hn(t)→ hn+1(t)→ · · ·u ,

To see that the reduction is computable, first observe that we can define a univalent, recursively related
system of notation S for ω · 2 with νS : N −→ ω · 2 defined as:

νS(n) =

{
n
2 if n is even
ω + n−1

2 if n is odd

J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions 1015

The steps of the reduction can now be described by a computable function with domain N (the domain
of νS):

ρ(n) =

{
(0k, f(x)→ g(x)) if n is even and k = n

2

(0k, g(x)→ h(x)) if n is odd and k = n−1
2

and similarly for the terms of the reduction. There also exists a computable modulus of convergence
ϕ, where both the first argument and the range are over the domain of νS , with ϕ(0, i) = 2i + 3 =
ν−1
S (ω + i+ 1) and ϕ(1, i) = ϕ(ν−1

S (ω), i) = 2i+ 2 = ν−1
S (i+ 1).

Remark 6.10. Not every strongly convergent reduction is proto-computable. Let ψ : N −→ N be a
strictly increasing uncomputable function and let s = f(s) and f(x)→ g(x). Consider the reduction
that in each step n ∈ N contracts the redex at position pn with |pn| = ψ(n). The reduction is of
length ω, and strongly convergent because ψ is strictly increasing. The reduction is, however, not
computable, as ψ is not.

We end this section with a number of observations that should convince the reader that the choice
of the representation (s � t, ϕ) is the ‘right’ one for computably strong convergence, and that the
inclusion of a computable modulus of convergence is necessary.

To start, observe that computable moduli of convergence support the computational intuition be-
hind strongly convergent rewriting that we believe is prevalent in infinitary rewriting: if a program
computes some ‘infinite data structure’, then for each natural number j the reduction will ‘stabilise’
after a finite number nj of computation steps such that the ‘initial part’ of the data structure of size j
can then be read without fear that the part will change later in the computation. Indeed, a modulus ϕ
computes an upper bound on nj when given input j: “to safely read data in the result up to depth j,
perform n = ϕ(0, j) steps.”

Remark 6.11. Given a computable modulus ϕ for a reduction t0 � tα, we can compute the term tα
in the following manner: for each p ∈ N∗ compute from which term tβ onward all reduction steps
occur below |p| (i.e., compute ϕ(0, |p|)) and take tβ(p).

Yet another reason for defining computably strongly convergent reductions with an explicit de-
mand for a computable modulus of convergence is that certain ‘wild’ computable reductions may be
strongly convergent, but fail to have a computable modulus, as shown in the following example.

Example 6.12. Let S ⊆ N be an infinite set that is r.e., but not co-r.e. (i.e., N \S is not r.e.). Consider
an injective total computable function ψ enumerating S (i.e., for each i ∈ N, ψ(i) computes the ith
element in the enumeration). The function ψ is eventually increasing (but not necessarily monotone),
because ψ is injective and because the number of elements in S smaller than n is finite for each n ∈ N.

Given the term s = f(s) and the rule f(x) → g(x), define a reduction of length ω starting from
s which for each i ∈ N contracts in the ith step the unique redex at position p with |p| = ψ(i). As
ψ is computable and eventually increasing, the reduction is proto-computably strongly convergent.
However, no computable modulus of convergence ϕ exists. Otherwise, S would be co-r.e.: for n ∈ N,
compute ϕ(0, n) and, next, compute the first ϕ(0, n) steps of the reduction. If no redex was contracted
at position q such that |q| = n, then n 6∈ S.

1016 J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions

As the above example shows, a computable modulus of convergence does not always exist for a
proto-computably strongly convergent reduction. Even stronger, it is generally not possible to compute
a modulus for a proto-computably strongly convergent reduction even if one is known to exist.

Example 6.13. For each inputless Turing machine M , we may define a computably strongly conver-
gent reduction based on the iTRS from Example 6.9: start from s = f(s), and, if M has not halted in
n steps, contract the unique redex at depth n in the nth step of the reduction (note that the first step of
the reduction occurs at depth 0, i.e., at the root). If M halts in precisely n steps, contract the redex at
the root in the nth step of the reduction, and for every k > n, contract the redex at depth k − n.

Observe that all defined reductions are computably strongly convergent reductions of length ω. If
M does not halt, then the function ϕ(0, j) = j + 1 defines a computable modulus of convergence
for the reduction, and if M does halt after n steps, then the function ϕ(0, j) = n + j + 1 defines a
computable modulus of convergence. However, there does not exist a Turing machine which, on input
of one of these reductions, outputs a modulus of convergence, otherwise the halting problem would
be decidable. On input M , compute ϕ and ϕ(0, 0) = m, and compute the depth at which the first m
steps occur. Now, M halts iff among the m steps there are exactly two steps at the root.

We hope that our efforts above have convinced the reader that omitting the modulus of convergence
from Definition 6.7 is incompatible with the aim of being able to compute the rate of convergence of
strongly convergent reductions.

7. Descendants and Origins

We devote the remainder of the paper to laying the groundwork that will enable future efforts to prove
computable versions of the standard compression and confluence results from infinitary rewriting [5,
33]. The groundwork consists of defining descendants and origins [43] in the current section, and
showing in Section 8 that they are uniformly computable.

Note that none of the notions defined in the current section depend on computability of the assumed
iTRSs and reductions. Computability will only become relevant again once we arrive at Section 8.

7.1. Descendants

Descendants formalise how a position from the initial term of a reduction ‘contributes’ to the positions
of the final term. We follow the usual definition from strongly convergent infinitary rewriting [5, 33]:

Definition 7.1. Let s→ t be a rewrite step contracting a redex at position p ∈ Pos(s) and employing
a rule l → r. If q ∈ Pos(s), then the set of descendants of q across s→ t, denoted q%(s→ t), is the
subset of positions of t defined as:

• {q} if q ‖ p or q < p,

• ∅ if q = p · p′ with l(p′) ∈ Σ, and

• {p · q′ · p′′ | r(q′) = l(p′)} if q = p · p′ · p′′ with l(p′) ∈ V

J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions 1017

If Q ⊆ Pos(s) is any set of positions, then Q%(s→ t) =
⋃
q∈Q q%(s→ t).

Let t0 →∗ tn be a finite reduction and let t0 � tα be strongly convergent. If Q ⊆ Pos(t0) is any
set of positions, then

Q%(t0 →∗ tn) =

{
Q if t0 →∗ tn is empty
(Q%(t0 →∗ tn−1))%(tn−1 → tn) otherwise

Furthermore,
Q%(t0 � tα) = (Q%(t0 � tβ))%(tβ →∗ tα) ,

where β is the largest limit ordinal smaller than or equal to α (or 0 if no such ordinal exists), and
q ∈ Q%(t0 � tβ) iff q ∈ Q%(t0 � tγ) and each step in tγ � tβ occurs at a position p with |p| > |q|.

Across a single rewrite step there are three possible cases: either (i) q ‖ p or q < p, in which case
the rewrite step does not affect the descendants of q, (ii) q = p · p′ with p′ the position of a function
symbol in l, in which case q does not have any descendants, or (iii) q = p · p′ · p′′ with p′ the position
of a variable, say x, in l, in which case q has a descendant for each occurrence of x in r. Across finite
reductions we simply iterate the definition of descendants across rewrite steps. Additionally, across
infinite reductions we make use of strong convergence.

Observe that the set of descendants of a position may be infinite across a single rewrite step, as
there are no constraints on the sizes of right-hand sides of rewrite rules. Across a reduction, the set of
descendants may also be infinite because there may be an infinite number of steps where across each
single step the third clause from the definition applies with the variable l(p′) ∈ V occurring more
often on the right-hand side of the rule than on the left-hand side.

Example 7.2. Consider the rules f(x)→ h(x, x) and g(x)→ x. We have

{ε, 0, 00}%(f(g(a))→ h(g(a), g(a))→ h(a, g(a)))

= {0, 00, 1, 10}%(h(g(a), g(a))→ h(a, g(a))) = {0, 1, 10} .

7.2. Origins

Origins formalise how a position in the final term of a reduction is ‘contributed’ to by the positions
of the initial term. Hence, origins can be considered to be a sort of ‘inverse’ of descendants. We
define origins as as in [44] (see [43] for a definition in the context of finitary term rewriting and further
discussion):

Definition 7.3. Let s→ t be a rewrite step contracting a redex at a position p ∈ Pos(s) and employ-
ing a rule l → r. If q ∈ Pos(t), then the set of origins of q across s → t, denoted (s → t)0q, is the
subset of positions of s defined as:

• {q} if q ‖ p or q < p,

• {p · q′ | l(q′) ∈ Σ} if q = p · p′ with r(p′) ∈ Σ, and

1018 J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions

• {p · q′ · p′′ | l(q′) = r(p′)} ∪ {p · q′ | l(q′) ∈ Σ ∧ r(ε) ∈ V } if q = p · p′ · p′′ with r(p′) ∈ V .

If Q ⊆ Pos(t) is a finite set of positions, then (s→ t)0Q =
⋃
q∈Q(s→ t)0q.

Let t0 →∗ tn be a finite reduction and let t0 � tα be strongly convergent. If Q ⊆ Pos(tn) is a
finite set of positions, then

(t0 →∗ tn)0Q =

{
Q if t0 →∗ tn is empty
(t0 →∗ tn−1)0((tn−1 → tn)0Q) otherwise

Furthermore, if Q ⊆ Pos(tα) is a finite set of positions, then

(t0 � tα)0Q = (t0 � tγ)0((tγ →∗ tβ)0Q) ,

where γ is the largest limit ordinal smaller than or equal to β (or 0 if no such ordinal exists), and β is
such that each step in tβ � tα occurs at a position p with |p| > |q| for all q ∈ Q.

Across a single rewrite step there are three possible cases: either (i) q ‖ p or q < p, in which case
the rewrite step does not affect the origins of q, (ii) q = p · p′ with p′ the position of a function symbol
in r, in which case all function symbol positions of l act as origins of q, or (iii) q = p · p′ · p′′ with p′

the position of a variable, say x, in r, in which case q has an origin for each occurrence of x in l, and,
in addition, when r = x, all function symbol positions of l act as origins of q. Across finite reductions
we iterate the definition of origins across rewrite steps. Additionally, across infinite reductions we
make use of strong convergence.

Observe that, contrary to descendants, we only define origins for finite sets of positions. The reason
for this asymmetry stems from the difference in use cases of descendants and origins: descendants
are used to track redexes across reductions (with a potentially infinite number of copies of a tracked
redex being created across a reduction), while origins are used to construct sub-reductions of strongly
convergent reductions with the final terms corresponding up to a certain finite depth (so-called needed
reductions, defined below).

The set of origins is well-defined in the limit ordinal case, because for all p with |p| ≤ |q| and
q ∈ Q we have that tβ(p) = tα(p), and because all descending chains of ordinals are finite. By the
previous observation and the fact that we only allow rewrite rules with finite left-hand sides, it also
follows that a finite set of positions always has a finite set of origins across a reduction. Furthermore,
if Q is a prefix-closed set of positions (i.e., for each q ∈ Q we have that p ∈ Q for all p < q), then the
set of origins is also prefix-closed.

Example 7.4. Consider the rules f(x)→ h(x, x) and g(x)→ x from Example 7.2. We have

(f(g(a))→ h(g(a), g(a))→ h(a, g(a)))0{0, 1, 10}
= (f(g(a))→ h(g(a), g(a)))0{0, 00, 1, 10} = {0, 00}

and

(f(g(a))→ h(g(a), g(a))→ h(a, g(a)))0{ε, 1}
= (f(g(a))→ h(g(a), g(a)))0{ε, 1} = {ε, 0} .

J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions 1019

Needed Reductions Having defined origins, we next define the related concept of needed reductions
for left-linear iTRSs, again following [44]. Intuitively, a needed reduction is a sub-reduction of a
strongly convergent reduction s � t that retains a certain amount of structure with respect to a set of
positions of the final term t. In order to define needed reductions, we first need to define needed steps.

Definition 7.5. Let t0 � tα be a strongly convergent reduction and let Q ⊆ Pos(tα) be finite and
prefix-closed. A step (pβ, lβ → rβ) of t0 � tα is needed for Q iff pβ ∈ (tβ � tα)0Q.

Hence, needed steps are steps that occur at origin positions of Q along t0 � tα. The set of needed
steps for Q will always be finite for a finite set Q by strong convergence of the reduction and the fact
that (tβ � tα)0Q is always finite (as we observed when we defined origins).

Example 7.6. Consider the rules f(x)→ h(x, x) and g(x)→ x and the reduction

f(g(a))→ h(g(a), g(a))→ h(a, g(a))

from Example 7.4. Given the finite set Q = {ε, 1} ⊆ Pos(h(a, g(a))), the definition of origins yields
that only the first step of the reduction is needed for Q, as 0 6∈ {ε, 1}.

Needed steps give rise to finite reductions in the case of left-linear systems:

Lemma 7.7. Let R be a left-linear iTRS, s �R t a strongly convergent reduction, and Q ⊆ Pos(t)
finite and prefix-closed. The finite subsequence of s � t formed by the needed steps for Q defines a
finite reduction s→∗R t′ such that t′(q) = t(q) for all q ∈ Q.

Proof:
Let n be the length of the finite subsequence of s� t formed by the needed steps for Q. We proceed
by induction on n. If n = 0, define s →∗R t′ to be the empty reduction. We have t′ = s. That
s(q) = t(q) for all q ∈ Q follows once we observe that each step in s � t occurs at a position p with
for all q ∈ Q either p > q or p ‖ q by the definition of neededness.

If n = n′+1, write t0 � tα for s� t and suppose the last step of the finite subsequence of needed
steps for Q is the βth step of t0 � tα, where the step contracts a redex at position p employing rule
l → r. By the induction hypothesis, there exists a finite reduction t0 →∗ t′n′ such that t′n′(q) = tβ(q)
for all q ∈ (tβ � tα)0Q. Hence, by left-linearity of R, a redex employing l → r occurs at position
p in t′n′ . Define t0 →∗ t′n by appending to t0 →∗ t′n′ the step contracting the l → r-redex at position
p in t′n′ . Observe that t′n(q) = tβ+1(q) for all q ∈ (tβ+1 � tα)0Q. Moreover, t′n(q) = tα(q) for all
q ∈ Q, as each step in tβ+1 � tα occurs at a position p with for all q ∈ Q either p > q or p ‖ q by
the definition of neededness. The complete result now follows once we observe that the needed steps
of t0 � tβ for (tβ � tα)0Q are precisely the first n′ needed steps of t0 � tα for Q. ut

With the above lemma in hand, we can define needed reductions.

Definition 7.8. LetR be a left-linear iTRS, s�R t a strongly convergent reduction, andQ ⊆ Pos(t)
finite and prefix-closed. The needed reduction for s� t and Q is the finite reduction whose existence
is guaranteed by Lemma 7.7

1020 J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions

Take heed that both the definition and all results related to needed reductions only apply to left-
linear iTRSs.

Example 7.9. Continuing Example 7.6, we obtain for the reduction

f(g(a))→ h(g(a), g(a))→ h(a, g(a))

and the finite, prefix-closed set {ε, 1} ⊆ Pos(h(a, g(a))) the needed reduction

f(g(a))→ h(g(a), g(a)) ,

with the function symbols of h(g(a), g(a)) and h(a, g(a)) equal at positions ε and 1, as implied by
Lemma 7.7.

7.3. Relating Descendants and Origins

As mentioned above, descendants and origins differ in that the former are defined over all sets of po-
sitions, while the latter are only defined over finite sets. Besides this, descendants and origins are also
not fully symmetric with regard to positions occurring in redex patterns and their substitute patterns
(compare Example 7.2 and the first half of Example 7.4): a position occurring in the redex pattern of
a contracted redex does not have any descendants, while a position occurring in the substitute pattern
of a contracted redex has all positions in the redex pattern as its origins. As before, the difference
stems from the distinct intended uses of descendants and origins: descendants are intended to track
non-contracted redexes across reductions, while origins are intended to construct needed reductions
(which requires identifying contracted redexes and, hence, one or more positions of those redexes).

Although the definitions of descendants and origins are not fully symmetric, we can still relate
them in the case of positions that are not part of redex patterns and substitute patterns. To start, if a set
of positions P of the initial term of a reduction does not overlap with the origins of a set of positions
Q of the final term, then the same holds for the descendants of P and for Q itself.

Proposition 7.10. Let R be an iTRS and s �R t a strongly convergent reduction. If P ⊆ Pos(s),
Q ⊆ Pos(t) finite, and P ∩ ((s� t)0Q) = ∅, then (P%(s� t)) ∩Q = ∅.

Proof:
Let α be the length of s � t. We proceed by transfinite induction on α. If α = 0, then we have
P%(s� t) = P and (s� t)0Q = Q, and the result is immediate.

If α = α′ + 1, write s � t as s � t′ → t. By the induction hypothesis, (P%(s � t′)) ∩ ((t′ →
t)0Q) is empty. To see that (P%(s � t)) ∩Q is also empty, suppose to the contrary that there exists
a position p ∈ P%(s� t) such that (p%(t′ → t))∩Q is non-empty. By definition of descendants and
origins, it is now immediate that for any q ∈ (p%(t′ → t)) ∩ Q we have p ∈ (P%(s � t)) ∩ ((t′ →
t)0q). Hence, (P%(s� t′)) ∩ ((t′ → t)0Q) is non-empty, contradicting the induction hypothesis.

If α is a limit ordinal, then by the induction hypothesis and strong convergence there exists a
β < α such that (P%(s � tβ)) ∩ ((tβ � t)0Q) is empty and such that each step in tβ � t occurs
a position greater than |q| for all q ∈ Q. Hence, by the definition of descendants and origins, we also
have that (P%(s� t)) ∩Q is empty. ut

J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions 1021

Besides the above, if some descendant of a position p occurs in a set of positions Q across a
reduction, then p itself occurs in the set of origins of Q.

Proposition 7.11. Let R be an iTRS and s �R t a strongly convergent reduction. If p ∈ Pos(s),
Q ⊆ Pos(t) finite, and ({p}%(s� t)) ∩Q 6= ∅, then p ∈ (s� t)0Q.

Proof:
Let α be the length of s � t. We proceed by transfinite induction on α. If α = 0, then we have
{p}%(s� t) = {p} and (s� t)0Q = Q, and the result is immediate.

If α = α′ + 1, write s� t as s� t′ → t. By the definition of descendants and origins, it follows
immediately from the non-emptiness of ({p}%(s � t)) ∩ Q that ({p}%(s � t′)) ∩ ((t′ → t)0Q)
is non-empty. Hence, by the induction hypothesis, p ∈ (s � t′)0((t′ → t)0Q) = (s � t)0Q, as
required.

If α is a limit ordinal, then, by the definition of descendants and origins and strong convergence,
we have that ({p}%(s � tβ)) ∩ ((tβ � t)0Q) is non-empty, with β < α such that each step in
tβ � t occurs a position greater than |q| for all q ∈ Q. Hence, by the induction hypothesis we have
that p ∈ (s� tβ)0Q = (s� t)0Q. ut

8. Computability of Descendants and Origins

Having defined descendants, origins, and the related notion of needed reductions, we now show uni-
form computability of all these notions with respect to computably strongly convergent reductions.
As computability of descendants depends on the computability of needed steps (which are defined by
means of origins), we start by considering origins and needed reductions.

8.1. Computability of Origins and Needed Reductions

We first prove that origins are uniformly computable.

Lemma 8.1. There exists a Turing machine M with the following behaviour:

Input – an r.e. iTRS R, a computably strongly convergent reduction t0 �R tα, and a finite set
Q ⊆ Pos(tα);

Output – the finite set (t0 � tα)0Q.

Proof:
Compute h = max{|p| | p ∈ Q}, which is possible as Q is finite, and employ the modulus of
convergence of t0 � tα to compute for h an ordinal β satisfying the conditions from Definition 7.3.
As in Remark 6.6, compute the largest limit ordinal γ smaller than or equal to β (or 0 if no such
ordinal exists). To compute (t0 � tα)0Q = (t0 � tγ)0((tγ →∗ tβ)0Q), first compute the finite
set Q′ = (tγ →∗ tβ)0Q, which is possible in finite time as the reduction is finite and as rules have
finite left-hand sides. If γ = 0, we are done. Otherwise, if γ > 0, repeat with Q′ in the place of Q
and t0 � tγ in the place of t0 � tα, where we have for the modulus of convergence ϕ′ of t0 � tγ

1022 J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions

that ϕ′(0, n) = ϕ(γ, n) and ϕ′(κ, n) = ϕ(κ, n) otherwise, with ϕ the modulus of convergence of
t0 � tα. Only a finite number of repetitions can occur as there are no infinite descending chains of
ordinals. ut

Closely following the above proof, we can also show that needed steps are uniformly computable.

Lemma 8.2. There exists a Turing machine M with the following behaviour:

Input – an r.e. iTRS R, a computably strongly convergent reduction t0 �R tα, and a finite, prefix-
closed set Q ⊆ Pos(tα);

Output – (i) the finite subsequence of needed steps for Q, and (ii) the length of the subsequence.

Proof:
Observe that (tβ � tα)0Q = Q in case all steps in tβ � tα occur at positions p such that |p| > |q| for
all q ∈ Q. Hence, it suffices to consider t0 � tβ , as no needed steps occur in tβ � tα, where β can
be computed using the modulus of convergence employing the fact that Q is finite. As in Remark 6.6,
compute the largest limit ordinal γ smaller than or equal to β (or 0 if no such ordinal exists). For each
γ ≤ δ < β, compute (tδ � tα)0Q by computing (tδ →∗ tβ)0Q, which is possible in finite time
as the reduction is finite and as rules have finite left-hand sides. As each (tδ � tα)0Q is finite, we
can compute whether (pδ, lδ → rδ) is needed. Next, if γ = 0, we are done. Otherwise, repeat with
Q′ = (tγ � tα)0Q in the place of Q and t0 � tγ in the place of t0 � tα, where we have for the
modulus of convergence ϕ′ of t0 � tγ that ϕ′(0, n) = ϕ(γ, n) and ϕ′(κ, n) = ϕ(κ, n) otherwise,
with ϕ the modulus of convergence of t0 � tα. Only a finite number repetitions can occur as there
are no infinite descending chains of ordinals. ut

With the above lemma in hand, we can show that needed reductions are uniformly computable.

Proposition 8.3. There exists a Turing machine M with the following behaviour:

Input – a left-linear r.e. iTRS R, a computably strongly convergent reduction s �R t, and a finite,
prefix-closed set Q ⊆ Pos(t);

Output – the needed reduction s→∗R t′ for s� t and Q.

Proof:
The finite subsequence of needed steps is computable by Lemma 8.2, and, hence, the needed reduction
is of finite length and can be computed by means of the Turing machine of Lemma 5.3. ut

8.2. Computability of Descendants

We next show that descendants are uniformly computable. Observe that uniform computability re-
quires us to somehow restrict the sets of positions we consider, as infinite sets are in general not
finitely representable. To this end, we restrict ourselves to recursive sets of positions. This mirrors

J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions 1023

the situation for origins in the sense that it is decidable for both finite and recursive sets of positions
whether a position occurs in the set.

To facilitate our presentation below, we ensure that the considered sets of positions are defined by
so-called position functions.

Definition 8.4. Let s be a term. A position function π of s is a function π : N −→ ℘(Pos(s)), with
℘(Pos(s)) the power set of Pos(s), such that |q| = n for all q ∈ π(n) and n ∈ N.

Observe that π(n) is finite for all n and that |π(n)| is uniformly computable in n if π is computable.
For each recursive set of positions of a computable term t there exists a computable position

function, and vice versa: in either case proceed by a breadth-first search over t starting from the root.
By a similar argument, there exists for each computable term t and variable x a computable position
function πx such that

⋃
n∈N πx(n) = {p | t(p) = x}.

We now prove that descendants across rewrite steps are uniformly computable.

Proposition 8.5. There exists a Turing machine M with the following behaviour:

Input – an r.e. iTRS R, a computable reduction step s →R t, and a computable position function π
of s with

⋃
n∈N π(n) = Q for some Q ⊆ Pos(s);

Output – a computable position function π′ of t with
⋃
n∈N π

′(n) = Q%(s→ t).

Proof:
Let l → r be the rewrite rule employed in s → t and observe, by the definition of descendants,
that for every descendant q′ ∈ Pos(t) of a position q ∈ Pos(s) we have that |q′| ≥ |q| − h where
h = max{|p| | l(p) ∈ Σ}. Hence, to compute π′(n) for a given n ∈ N it suffices to consider
the finite set of positions Qn =

⋃
n′≤n+h π(n′), which can be computed as π is computable. By

definition of descendants and the fact that a computable position function π′x exists for each variable
x in r, there also exists a computable position function π′q such that

⋃
n∈N π

′
q(n) = q%(s → t) for

each q ∈ Pos(s). Hence, π′(n) can be computed by first computing the finite set Qn and then taking⋃
q∈Qn π

′
q(n). ut

Proposition 8.5 immediately implies that the descendants of sets of positions (represented by com-
putable position functions) are computable across finite reductions. Employing needed steps, we can
also show that descendants are computable across computably strongly convergent reductions.

Lemma 8.6. There exists a Turing machine with the following behaviour:

Input – an r.e. iTRS R, a computably strongly convergent reduction s �R t, and a computable
position function π of s with

⋃
n∈N π(n) = P for some P ⊆ Pos(s);

Output – a computable position function π′ of t with
⋃
n∈N π

′(n) = Q%(s� t).

1024 J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions

Proof:
Observe that the definition of descendants depends on the positions of the contracted redexes and
the employed rewrite rules, but not on the actual terms that occur along reductions. Now, for each
n ∈ N, compute π′(n) by computing a computable position function π′n such that

⋃
n∈N π

′
n(n) is the

set of descendants of Q across the steps of s � t needed for the finite, prefix-closed set of positions
{q ∈ Pos(t) | |q| ≤ n}, and define π′(n) = π′n(n).

Considering the needed steps for {q ∈ Pos(t) | |q| ≤ n} suffices by Proposition 7.11 and the
definition of needed steps, although the needed steps do not necessarily form a reduction, as R is not
assumed to be left-linear. Each position function π′n can be computed by repeated application of the
Turing machine of Proposition 8.5. ut

9. Conclusion and Future Work

We have defined computable infinitary rewriting by introducing concepts from recursion theory and
computable analysis to the domain of strongly convergent infinitary rewriting. We have also shown
that descendants and origins—used to track redexes forward and backward across reductions—are
uniformly computable for computable infinitary reductions. Our work is the first to comprehensively
treat computability of both infinite terms and infinite reductions; all our definitions and results use
classical notions from computability theory with no extra assumptions.

We believe that our results lay the groundwork for establishing computable versions of the usual
compression and confluence theorems from strongly convergent infinitary rewriting [5, 33]. Further-
more, we believe that the following two questions warrant further study:

• How can computational complexity for infinitary rewriting be defined? What are natural prob-
lems or transformations on infinite terms that can be computed in polynomial time? A starting
point could be a lifting of similar notions from computable analysis [45, 2].

• Can suitable subclasses of computable infinite terms or computable convergent reductions be
defined that have nice closure properties? The set of rational terms affords one such class,
but other computationally limited notions might be possible, e.g., an ‘infinite tree analogue’ of
automatic sequences [46].

Acknowledgements The authors thank Patrick Bahr and the reviewers of various drafts for their
constructive comments. Figure 2 was inspired by Figure 3.3 of Patrick Bahr’s PhD thesis [47].

References
[1] Klop JW, van Oostrom V, de Vrijer R. Orthogonality. In: Term Rewriting Systems [28], Chapter 4, pp.

88–148, 2003.

[2] Weihrauch K. Computable Analysis: An Introduction. Springer, New York, 2000. ISBN 978-3642569999.

[3] Tucker JV, Zucker JI. Theory of Computation over Stream Algebras, and its Applications. In: Proceedings
of the 17th International Symposium on Mathematical Foundations of Computer Science (MFCS’92),

J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions 1025

volume 629 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1992 pp. 62–80. doi:0.1007/3-
540-55808-X 6.

[4] Barwise J. Infinitary Logic and Admissible Sets. Journal of Symbolic Logic, 1969. 34(2):226–252.
doi:10.2307/2271099.

[5] Kennaway R, Klop JW, Sleep R, de Vries FJ. Transfinite Reductions in Orthogonal Term Rewriting
Systems. Information and Computation, 1995. 119(1):18–38. doi:10.1006/inco.1995.1075.

[6] Simonsen JG. On modularity in infinitary term rewriting. Information and Computation, 2006.
204(6):957–988. doi:10.1016/j.ic.2006.02.005.

[7] Kahrs S. Modularity of Convergence and Strong Convergence in Infinitary Rewriting. Logical Methods
in Computer Science, 2010. 6(3:18):1–27. doi:10.2168/LMCS-6(3:18)2010.

[8] Klop JW, de Vrijer RC. Infinitary Normalization. In: We Will Show Them! Essays in Honour of Dov
Gabbay, volume 2. College Publications, London. ISBN 978-1904987123, 2005 pp. 169–192.

[9] Zantema H. Normalization of Infinite Terms. In: Proceedings of the 19th International Conference on
Rewriting Techniques and Applications (RTA 2008), volume 5117 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 2008 pp. 441–455. doi:10.1007/978-3-540-70590-1 30.

[10] Kennaway R, Klop JW, Sleep MR, de Vries FJ. Infinitary Lambda Calculus. Theoretical Computer
Science, 1997. 175(1):93–125. doi:10.1016/S0304-3975(96)00171-5.

[11] Barendregt H, Klop JW. Applications of infinitary lambda calculus. Information and Computation, 2009.
207(5):559–582. doi:10.1016/j.ic.2008.09.003.

[12] Ketema J, Simonsen JG. Infinitary Combinatory Reduction Systems. Information and Computation, 2011.
209(6):893–926. doi:10.1016/j.ic.2011.01.007.

[13] Ketema J, Simonsen JG. Infinitary Combinatory Reduction Systems: Normalising Reduction Strategies.
Logical Methods in Computer Science, 2010. 6(1:7):1–35. doi:10.2168/LMCS-6(1:7)2010.

[14] Ketema J, Simonsen JG. Infinitary Combinatory Reduction Systems: Confluence. Logical Methods in
Computer Science, 2009. 5(4:3):1–29. doi:10.2168/LMCS-5(4:3)2009.

[15] Bahr P. Infinitary Term Graph Rewriting is Simple, Sound and Complete. In: Proceedings of the 23rd
International Conference on Rewriting Techniques and Applications (RTA 2012), volume 15 of Leibniz
International Proceedings in Informatics. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl,
2012 pp. 69–84. doi:10.4230/LIPIcs.RTA.2012.69.

[16] Bahr P. Modes of Convergence for Term Graph Rewriting. Logical Methods in Computer Science, 2012.
8(2:6):1–60. doi:10.2168/LMCS-8(2:6)2012.

[17] Kahrs S. Infinitary rewriting: meta-theory and convergence. Acta Informatica, 2007. 44:91–121. doi:
10.1007/s00236-007-0043-2.

[18] Kahrs S. Infinitary Rewriting: Foundations Revisited. In: Proceedings of the 21st International Conference
on Rewriting Techniques and Applications (RTA 2010), volume 6 of Leibniz International Proceedings
in Informatics. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl, 2010 pp. 161–176. doi:
10.4230/LIPIcs.RTA.2010.161.

[19] Bahr P. Abstract Models of Transfinite Reductions. In: Proceedings of the 21st International Confer-
ence on Rewriting Techniques and Applications (RTA 2010), volume 6 of Leibniz International Pro-
ceedings in Informatics. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl, 2010 pp. 49–66.
doi:10.4230/LIPIcs.RTA.2010.49.

1026 J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions

[20] Inverardi P, Zilli MV. Rational Rewriting. In: Proceedings of the 19th International Symposium on
Mathematical Foundations of Computer Science (MFCS’94), volume 841 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1994 pp. 433–442. doi:10.1007/3-540-58338-6 90.

[21] Corradini A, Gadducci F. Rational Term Rewriting. In: Proceedings of the 1st International Conference
on Foundations of Software Science and Computation Structure (FoSSaCS’98), volume 1378 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1998 pp. 156–171. doi:10.1007/BFb0053548.

[22] Corradini A, Drewes F. Term Graph Rewriting and Parallel Term Rewriting. In: Proceedings of the
6th International Workshop on Computing with Terms and Graphs (TERMGRAPH 2011), volume 48 of
Electronic Proceedings in Theoretical Computer Science. Open Publishing Association, Australia, 2011
pp. 3–18. doi:10.4204/EPTCS.48.3.

[23] Aoto T, Ketema J. Rational Term Rewriting Revisited: Decidability and Confluence. In: Proceedings of
the 6th International Conference on Graph Transformations (ICGT 2012), volume 7562 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 2012 pp. 172–186. doi:10.1007/978-3-642-33654-6 12.

[24] Vermaat M. Infinitary Rewriting in Coq. Master’s thesis, Vrije Universiteit, Amsterdam, 2010.

[25] Endrullis J, Hansen HH, Hendriks D, Polonsky A, Silva A. Coinductive Foundations of Infinitary Rewrit-
ing and Infinitary Equational Logic. Logical Methods in Computer Science, 2018. 14(1:3):1–44. doi:
10.23638/LMCS-14(1:3)2018.

[26] Baader F, Nipkow T. Term Rewriting and All That. Cambridge University Press, Cambridge, 1998. ISBN
978-0521779203.

[27] Klop JW. Term Rewriting Systems. In: Abramsky S, Gabbay D, Maibaum T (eds.), Handbook of Logic in
Computer Science, volume 2, pp. 1–116. Oxford University Press, Oxford. ISBN 978-0198537618, 1992.

[28] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge, 2003. ISBN 978-0521391153.

[29] Fernàndez M. Models of Computation: An Introduction to Computability Theory. Undergraduate Topics
in Computer Science. Springer, New York, 2009. ISBN 978-1848824331.

[30] Jones ND. Computability and Complexity from a Programming Perspective. The MIT Press, Cambridge,
MA, 1997. ISBN 978-0262100649.

[31] Rogers Jr H. Theory of Recursive Functions and Effective Computability. The MIT Press, Cambridge,
MA, paperback edition, 1987. ISBN 978-0262680523.

[32] Sipser M. Introduction to the Theory of Computation. Thomson Course Technology, Boston, 2nd edition,
2006. ISBN 978-0534950972.

[33] Kennaway R, de Vries FJ. Infinitary rewriting. In: Term Rewriting Systems [28], Chapter 12, pp. 668–711,
2003.

[34] Ketema J. Böhm-Like Trees for Rewriting. Ph.D. thesis, Vrije Universiteit, Amsterdam, 2006.

[35] Courcelle B. Fundamental Properties of Infinite Trees. Theoretical Computer Science, 1983. 25(2):95–
169. doi:10.1016/0304-3975(83)90059-2.

[36] Kleene SC. Recursive Functions and Intuitionistic Mathematics. In: Proceedings of the International
Conference of Mathematicians, August 30–September 6, 1950, volume 1. American Mathematical Soci-
ety, Providence, RI, USA, 1952 pp. 679–685.

[37] Bauer A. König’s Lemma and the Kleene Tree, 2006. Unpublished tutorial note.

J. Ketema, J.G. Simonsen / Computing with Infinite Terms and Infinite Reductions 1027

[38] Bridges D, Richman F. Varieties of Constructive Mathematics, volume 97 of London Mathematical Society
Lecture Notes Series. Cambridge University Press, Cambridge, 1987. ISBN 978-0521318020.

[39] Rodenburg PH. Termination and Confluence in Infinitary Term Rewriting. Journal of Symbolic Logic,
1998. 63(4):1286–1296. doi:10.2307/2586651.

[40] Miller LW. Normal Functions and Constructive Ordinal Notations. Journal of Symbolic Logic, 1976.
41(2):439–459. doi:10.2307/2272243.

[41] Kleene SC. On Notation for Ordinal Numbers. Journal of Symbolic Logic, 1938. 3(4):150–155. doi:
10.2307/2267778.

[42] Phillips IC. Recursion Theory. In: Abramsky S, Gabbay DM, Maibaum TSE (eds.), Handbook of Logic
in Computer Science, volume 1, pp. 79–188. Oxford University Press, Oxford. ISBN 978-0198537359,
1992.

[43] Bethke I, Klop JW, de Vrijer RC. Descendants and Origins in Term Rewriting. Information and Compu-
tation, 2000. 159(1–2):59–124. doi:10.1006/inco.2000.2876.

[44] Ketema J. Reinterpreting Compression in Infinitary Rewriting. In: Proceedings of the 23th International
Conference on Rewriting Techniques and Applications (RTA 2012), volume 15 of Leibniz International
Proceedings in Informatics. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl, 2012 pp. 209–
224. doi:10.4230/LIPIcs.RTA.2012.209.

[45] Ko KI. Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser,
Boston, 1991. ISBN 978-1468468045.

[46] Allouche JP, Shallit J. Automatic Sequences: Theory, Application, Generalizations. Cambridge University
Press, Cambridge, 2003. ISBN 978-0521823326.

[47] Bahr P. Modular Implementation of Programming Languages and a Partial-Order Approach to Infinitary
Rewriting. Ph.D. thesis, University of Copenhagen, 2012.

