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Abstract
An constructive parallel standardisation method for infinitary rewriting is provided.

1 Introduction

In [4] computability is introduced to the world of infinitary rewriting. The setup is simple: Infi-
nite terms are represented by Turing machines that take positions as input and that output func-
tion symbols and variables. Strongly convergent reductions are represented by Turing machines
that take computable ordinals [5] as input and that output computable terms and rewrite steps.
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Figure 1: A strongly convergent reduction ρ with modulus ϕ.
Rewrite steps are represented by (position, rule)-pairs.

A shortcoming of the above
setup is that the rate of con-
vergence of a strongly conver-
gent reduction is in general
not computable, while knowl-
edge of this rate is required in
many places. For this reason
one ingredient is added to the
mix in [4]: Each reduction ρ
of length α is equipped with
a modulus of convergence ϕ.
This is a computable function
which, given a depth d and a
limit ordinal β ≤ α, yields from which step in ρ onwards we have that all steps up to β occur
at depth > d (see Figure 1 for an example inspired by [1]). A strongly convergent reduction
equipped with a modulus of convergence is called a computably strongly convergent reduction.

The main aim of [4] is to provide constructive (or computable) versions of the central theo-
rems from infinitary rewriting. In particular, computable versions of the compression theorem
for left-linear systems and the confluence theorem for non-collapsing, orthogonal systems are
provided. Missing are computable versions of the standardisation theorems for left-linear sys-
tems as developed in [3]. The current work partially bridges this gap by presenting a construc-
tive version of the parallel standardisation theorem of [3] (the simplest form of standardisation
discussed in [3]). An implementation in Haskell is provided at:

https://github.com/jeroenk/iTRSsImplemented/tree/compression

Here, as in [3], a parallel standard reduction is defined as follows:

Definition 1.1. Let t0 � tα be strongly convergent with (pβ , lβ → rβ)β<α the sequence of
rewrite steps of t0 � tα. The reduction t0 � tα is parallel standard iff for every β < α either:

a. pβ ‖ pκ or pβ ≤ pκ for all β < κ < α, or

b. pβ = pκ · p′β with p′β ∈ {q ∈ Pos(lκ) | lκ(q) ∈ Σ} and κ = min{γ ∈ (β, α) | pβ > pγ}.
Thus, for each step from a reduction, each preceding step (β) either (a) occurs parallel or at
lesser depth, or (b) contributes to the creation of a redex from another preceding step (κ).
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Main aim. We aim to prove Theorem 4.10 of [3] in a form that facilitates computability:

Theorem 1.2 (Computable Parallel Standardisation). There exists a Turing machine M with
the following behaviour:
Input: A left-linear iTRS R and a computably strongly convergent reduction s �R t of arbi-
trary, computable ordinal length α.

Output: A parallel standard, computably strongly convergent reduction s �R t of length at
most ω.

Whence, given a Turing machine that represents a reduction between two terms, M outputs
another Turing machine that represents a parallel standard reduction between those terms. As
briefly alluded to in the opening paragraph of this paper, all these Turing machines are as one
expects: they take finite inputs and compute their finite outputs in finite time.

Preliminaries. Although we omit the definition of computably strongly convergent reduc-
tions, as we do not depend on the exact details, a number of other notions from [4] are essential.
In particular, a computable parallel rewrite step s ‖→ t is a pair (π, l → r), with π a total com-
putable function from natural numbers to sets of positions of s, and l → r a rewrite rule. The
function π is such that for all d ∈ N we have that π(d) yields precisely those positions at depth
d at which redexes are contracted in the parallel step. Observe that the usual definition of a
parallel rewrite step is obtained by taking (

⋃
d∈N π(d), l→ r). A computable parallel reduction,

i.e. a finite sequence of computable parallel rewrite steps, is denoted by s ‖→∗ t.
Below we employ the following permutation result for parallel rewrite steps, which is Propo-

sition 8.3 of [4]. In the proposition, l(q) denotes the function symbol at position q in l.

Proposition 1.3. There exists a Turing machine M with the following behaviour:
Input: A left-linear iTRS R, a computable parallel rewrite step s ‖→R s′, and a computable
rewrite step s′ →R t, contracting a redex at a position p ∈ Pos(s′) employing a rule l→ r,
such that no redex from s ‖→ s′ occurs at a prefix position of a position in {p · q | l(q) ∈ Σ}.

Output: A reduction step s→R t
′, contracting a redex at the position p ∈ Pos(s) and employ-

ing the rewrite rule l→ r, and a parallel rewrite step t′ ‖→ t.

We also require needed reductions, which depend on origins (the inverse of descendants [2]):

Definition 1.4. Let s → t be a rewrite step contracting a redex at a position p ∈ Pos(s)
employing a rule l → r. If q ∈ Pos(t), then the set of origins of q across s → t, denoted
(s→ t)0q, is the subset of positions of s defined as

• {q} if q ‖ p or q < p,

• {p · q′ | l(q′) ∈ Σ} if q = p · p′ with r(p′) ∈ Σ, and

• {p · q′ · p′′ | l(q′) = r(p′)} ∪ {p · q′ | l(q′) ∈ Σ ∧ r(ε) ∈ V } if q = p · p′ · p′′ with r(p′) ∈ V .

The definition is easily extended to finite reductions and finite sets of positions Q ⊆ Pos(t).
Given these extensions, the extension to strongly convergent reductions follows trivially by
exploiting the limit behaviour of such reductions (see [4, 3] for details and further explanation).

Let t0 � tα be strongly convergent and let Q ⊆ Pos(tα) be finite and prefix-closed (i.e.
q ∈ Q and p ≤ q implies p ∈ Q). A step tβ → tβ+1 of t0 � tα contracting a redex at position
pβ is called needed for Q if pβ ∈ (tβ � tα)0Q. A needed reduction for Q removes from t0 � tα
all steps not needed for Q; this yields a finite reduction t0 →∗ t′α such that t′α(q) = tα(q) for all
q ∈ Q (i.e. the function symbols of t′α and tα correspond for all positions in Q). We have the
following relation between needed reductions and parallel reductions.
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Lemma 1.5 (Lemma 8.4 of [4]). There exists a Turing machine M with the following behaviour:
Input: A left-linear iTRS R, a computably strongly convergent reduction s�R t, and n ∈ N.
Output: A parallel reduction tn ‖→∗R tn+1 such that s →∗R ti is the needed reduction for the
finite, prefix-closed set Qi = {q ∈ Pos(t) | |q| ≤ i} with i ∈ {n, n+ 1}.

It is also possible to obtain the needed steps of a parallel reduction in a constructive manner.

Lemma 1.6 (Lemma 8.5 of [4]). There exists a Turing machine M with the following behaviour:
Input: A left-linear iTRS R, a computable parallel reduction s ‖→∗R t, and a finite, prefix-closed
set Q ⊆ Pos(t).

Output: A finite reduction s→∗R t′ and a parallel reduction t′ ‖→∗R t such that t′(q) = t(q) for
all q ∈ Q and such that the steps of s→∗ t′ are precisely the steps of s ‖→∗ t needed for Q and
where the number of parallel steps in t′ ‖→∗ t is equal to the number of parallel steps in s ‖→∗ t.

Although not explicit in the above lemma, it is important to observe that if all steps in the
parallel reduction s ‖→∗ t occur at depth > d, then also all steps in s →∗ t′ and t′ ‖→∗ t occur
at depth > d. That this is the case is immediate by prefix-closedness of Q and the definition of
needed reductions (see [4] for details). Below, we make heavy use of this observation.

2 Standardisation

To prove standardisation in a constructive manner, the main idea now is to work in a depth-wise
fashion starting from least depth and to step by step transform the reduction that is inputted
in to one which is parallel standard for the redexes that occur at increasingly greater depths.
To this end, we require two intermediate results which help us to separate a given reduction
into a parallel standard and a parallel reduction, both satisfying certain depth constrains. We
start by considering the case where the given reduction is a finite one.

Lemma 2.1. There exists a Turing machine M with the following behaviour:
Input: A natural number d ∈ N, a left-linear iTRS R, and a non-empty, finite reduction
s→∗R t such that all contracted redexes except the final one occur at depth > d and such that
the final redex occurs at depth d.

Output: A finite, parallel standard reduction s →∗R t′ and a parallel reduction t′ ‖→∗R t such
that such that all contracted redexes of s→∗R t′ occur at depth ≥ d with the final redex occurring
at depth d and such that all contracted redexes of t′ ‖→∗R t occur at depth > d.

Proof. Iteratively compute reductions of the form s ‖→∗ s′ →∗ t′ ‖→∗ t, with (a) all redexes
contracted in s ‖→∗ s′ and t′ ‖→∗ t occurring at depth > d and with (b) s′ →∗ t′ parallel
standard such that all redexes occurring at positions q ≥ p with |p| = d and p the position of
the final redex of the original reduction s→∗ t.

Initially, (a) take s ‖→∗ s′ to be s →∗ t with exception of the final step, (b) take s′ →∗ t′
to be the final step of s →∗ t, and (c) take t′ ‖→∗ t to be empty. This assignment obviously
satisfies all requirements when defining each parallel step si ‖→∗ si+1 from s ‖→∗ s′ by taking
the step si → si+1 from s→∗ t, contracting the redex (pi, li → ri), and computing (πi, li → ri)
with πi(|pi|) = {pi}, and πi(d) = ∅ in case d 6= |pi|.

If s ‖→∗ s′ is empty, halt whilst outputting s′ →∗ t′ and t′ ‖→∗ t. Otherwise, consider the
final parallel step of s ‖→∗ s′ and permute this step over the steps from s′ →∗ t′ in the manner
below, assuming that at some point we have a parallel rewrite step t′i−1 ‖→ s′i that we want
to permute over a step s′i → s′i+1 from s′ →∗ t′ contracting a redex (pi, li → ri). Initially,
t′i−1 ‖→ s′i is the final step of s ‖→∗ s′ and s′i → s′i+1 is the first step of s′ →∗ t′.
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1. Compute the finite, prefix-closed set Qi = {q | q ≤ pi}∪ {pi · q | q ∈ Pos(l) and l(q) ∈ Σ},
where computability of the set Qi follows by finiteness of pi and finiteness of li in li → ri.

2. Apply Lemma 1.6 to t′i−1 ‖→ s′i and Qi to obtain t′i−1 →∗ ti ‖→ s′i and, hence, t′i−1 →∗
ti ‖→∗ s′i → s′i+1. As the steps of t′i−1 →∗ ti are parallel, because those of t′i−1 ‖→ s′i are,
they can be put in parallel standard order by sorting them based on the length of the
positions of the contracted redexes (starting with positions of least depth). For the next
step assume t′i−1 →∗ ti is sorted as such.

3. Apply Lemma 1.3 to ti ‖→ s′i → s′i+1 — this is possible as no redexes at prefix positions of
positions in {p · q | l(q) ∈ Σ} occur in ti ‖→ s′i by construction — to obtain ti → t′i ‖→ s′i+1

and, hence, t′i−1 →∗ ti → t′i ‖→ s′i+1. Observe that t′i−1 →∗ ti → t′i is parallel standard, as
t′i−1 →∗ ti is and as all redexes contracted in this reduction are needed for Qi and, hence,
the redex contracted in ti → t′i.

It follows easily that the concatenation of the reductions t′i−1 →∗ ti → t′i from above (in the
order obtained) is parallel standard, as s′ →∗ t′ and each t′i−1 →∗ ti → t′i is parallel standard.

Once the final step of s ‖→∗ s′ has been permuted over all steps from s′ →∗ t′ by means of
the above permutation procedure, obtaining a parallel step s′′ ‖→ t′ with (π, l → r), compute
the set π(d). As the above procedure considers needed redexes only and as all steps in the
final step of s ‖→∗ s′ occur at depth > d, it follows that π(d) is either empty or a singleton set
consisting of a position p which is also the position of the redex contracted in the final step of
s′ →∗ t′ (note that this is only possible in case the final step of s′ →∗ t′ is collapsing). If the set
is empty define s′′ = t′′ and let t′′ ‖→ t′ be s′′ ‖→ t′. Otherwise, let s′′ → t′′ contract (p, l → r)
and let t′′ ‖→ t′ be (π′, l→ r) with π′(d) = ∅, and π′(d′) = π(d′) in case d′ 6= d.

The new reduction s ‖→∗ s′ →∗ t′ ‖→∗ t is now defined by (a) taking s ‖→∗ s′ equal to the
previous s ‖→∗ s′ whilst removing the final step, (b) taking s′ →∗ t′ equal to the concatenation of
the reductions t′i−1 →∗ ti → t′i (in order obtained) suffixed with s′′ →= t′′, and (c) taking t′ ‖→∗ t
equal to the previous t′ ‖→∗ t prefixed with t′′ ‖→ t′. That the new reduction s ‖→∗ s′ →∗ t′ ‖→∗ t
satisfies all requirements is immediately by the use of neededness in permutation procedure.

The computation eventually halts, as the reduction s→∗ t, given as input, is finite.

We next consider separation in the case the given reduction is a parallel one.

Lemma 2.2. There exists a Turing machine M with the following behaviour:
Input: A natural number d ∈ N, a left-linear iTRS R, and a computable parallel reduction
s ‖→∗R t such that all contracted redexes occur at depth ≥ d.

Output: A finite, parallel standard reduction s →∗R t′ and a parallel reduction t′ ‖→∗R t such
that all steps of s →∗R t′ occur at depth ≥ d and the final step occurs at depth d and all
contracted redexes of t′ ‖→∗R t occur at depth > d.

Proof. Iterate over the parallel steps from s ‖→∗ t to find the first step si ‖→ si+1 contracting a
redex at depth d. For each step the (non-)existence of such a redex at depth d is computable by
definition of parallel rewrite steps. Moreover, if no parallel step contracting a redex at depth d
exists, we can halt after a finite number of iterations, as s ‖→∗ t has computable, finite length.

If no redex is contracted at depth d, all redexes of s ‖→∗ t must occur at depth > d. Define
t′ = s and halt outputting the empty reduction s→∗ s and the parallel reduction s ‖→∗ t.

If a the first redex at depth d is contracted in the step si ‖→ si+1 defined by (πi, li → ri)
with pi ∈ πi(d) for some pi, then compute si ‖→ s′i ‖→ si+1 such that (a) si ‖→ s′i contracts
(π′i, li → ri) with π′i(d) = {pi}, and π′i(d

′) = ∅ in case d′ 6= d, and such that (b) s′i ‖→ si+1

contracts (π′′i , li → ri) with π′′i (d) = πi(d) \ {pi}, and π′′i (d′) = πi(d
′) in case d′ 6= d. Observe

that the reduction si ‖→ s′i ‖→ si+1 is computable as the parallel step si ‖→ si+1 is.
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Compute the finite, prefix-closed set Qi = {q | q ≤ pi}, with pi as above, and apply
Lemma 1.6 to s ‖→∗ si ‖→ s′i and Qi to obtain s →∗ ti ‖→∗ s′i. As all redexes in s ‖→∗ si ‖→ s′i,
except for the one contracted in si ‖→ s′i occur at depth > d, and as the redex contracted in
si ‖→ s′i is needed for Qi, it follows by definition of needed redexes that all redexes contracted
in s→∗ ti, except for the final one, and all redexes contracted in ti ‖→∗ s′i occur at depth > d.
Moreover, the final redex contracted in s→ ti occurs at position pi with |pi| = d.

Apply Lemma 2.1 to s→∗ ti to obtain s→∗ t′i ‖→
∗
ti and recursively repeat the computation

with t′i ‖→
∗
ti ‖→∗ s′i ‖→

∗
si+1 ‖→∗ t in place of s ‖→∗ t. Suppose this yields a parallel standard

reduction t′i →∗ t′ and parallel reduction t′ ‖→∗ t; halt outputting s →∗ t′i →∗ t′ and t′ ‖→∗ t.
As the final step of the parallel standard reductions s→∗ t′i and t′i →∗ t′ both contract a redex
at depth d, and as no redexes at lesser depth are contracted, it follows that s →∗ t′i →∗ t′ is
parallel standard. Finally, as all redexes contracted in t′i ‖→

∗
ti ‖→∗ s′i occur at depth > d and

as s′i ‖→
∗
si+1 has one redex less at depth d than si ‖→∗ si+1, it follows by finiteness of s ‖→∗ t

that the performed recursive computation eventually halts.

Concretely, our constructive standardisation theorem now works as follows: Given a strongly
convergent reduction s � t, compute for each n ∈ N the set of positions Qn = {q ∈ Pos(t) |
|q| ≤ n} of the final term t of the reduction. Observing that Qn is prefix-closed, the needed
reduction s � tn for Qn is computed. Subsequently, s � tn is filtered based on s � tn−1
(Lemma 1.5) and the definition of parallel standardness (Lemma 2.2). Finally, the standard
reduction is extended with the finite subset of the steps that remain after filtering.

Write νn and ρ for, respectively, the computable functions represented by the Turing ma-
chines from Lemmas 1.5 and 2.2. The filtering is then performed by a partial computable
function φn, which is defined as follows and where n ∈ N can be taken as parameter:

φn(s� t, sn ‖→∗ tn−1) = ρ(n, sn ‖→∗ tn−1 · νn−1(s� t)) ,

where tn−1 is the final term of the needed reduction for s � t and Qn−1. The output of φn
with respect to any other input is undefined.

By definition of ρ, the function φn yields a finite reduction sn →∗ sn+1 and parallel reduction
sn+1 ‖→∗ tn. The reduction sn →∗ sn+1 is the reduction that will be appended to the standard
reduction being constructed. The parallel reduction sn+1 ‖→∗ tn will be used when applying
φn+1 to obtain sn+1 →∗ sn+2. We now have:

Proof (Theorem 1.2). Identical to the proof of computable compression in [4], as sketched
above, where instead of Lemma 8.5 from [4] we use Lemma 2.2.

Thus, we obtain a constructive parallel standardisation theorem. An open question is if a
similar result can be obtained for the notion of depth leftmost standardisation from [3].
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