
Reducing Code Duplication by
Identifying Fresh Domain Abstractions

Steven Klusener
ESI (TNO)

Eindhoven, The Netherlands

Arjan J. Mooij
ESI (TNO)

Eindhoven, The Netherlands

Jeroen Ketema
ESI (TNO)

Eindhoven, The Netherlands

Hans van Wezep
Philips Healthcare

Best, The Netherlands

Abstract—When software components are developed itera-
tively, code frequently evolves in an inductive manner: a unit
(class, method, etc.) is created and is then copied and modified
many times. Such development often happens when variation
points and, hence, proper domain abstractions are initially
unclear. As a result, there may be substantial amounts of code
duplication, and the code may be difficult to understand and
maintain, warranting a redesign.

We apply a model-based process to semi-automatically re-
design an inductively-evolved industrial adapter component writ-
ten in C++: we use reverse engineering to obtain models of the
component, and generate redesigned code from the models.

Based on our experience, we propose to use three models to
help recover understanding of inductively-evolved components,
and transform the components into redesigned implementations.
Guided by a reference design, a component’s code is analyzed
and a legacy model is extracted that captures the component’s
functionality in a form close to its original structure. The legacy
model is then unfolded, creating a flat model which eliminates
design decisions by focusing on functionality in terms of external
interfaces. Analyzing the variation points of the flat model yields
a redesigned model and fresh domain abstractions to be used in
the new design of the component.

I. INTRODUCTION

In industry, we often encounter development practices in
which a next unit (class, method, etc.) is implemented by
copying and modifying a previous one, leading to numerous
sibling units. Such inductive evolution typically occurs when
variation points and, hence, proper domain abstractions are
initially unclear. At some point, functionality will have reached
a certain level of completeness, while the design lacks essential
properties to ensure maintainability [1].

Inductively evolved components naturally arise in iterative
software development [2]. Once the maintenance of these
components becomes difficult, it is best to redesign [2]. Such
a redesign can be seen as an instance of the grow-and-
prune model of [3]. The initial development of the component
is loosely managed not to limit growth, but leading to an
uncontrolled mitosis implementation [3]. Afterwards, once
functionality and variation points are clear, the implementation
can be pruned into a governed architecture.

Redesign

It is often a challenge to allocate resources to a redesign
project; there are risks involved without immediate value
in terms of new features. Nevertheless, in the long run, a
redesign generally supports maintenance and development of

new features by reducing accidental complexity. Given this
observation, we investigate methods that enable the redesign
of software components in an industrial setting.

Simple redesigns can often be performed using step-wise
refactoring [4]. However, if an existing design cannot be
motivated other than by historical means, a step-wise approach
is often insufficient, and a major redesign may be required. In
this context, redesign processes are commonly called mod-
ernizations [5], rejuvenations [6], or renovations [7], and are
usually associated with legacy software. However, inductively
evolved components are not necessarily old; below we use the
term legacy code simply to refer to the original code.

An important challenge is to avoid a redesign that closely
mirrors the legacy implementation. A good redesign requires
moving away from (arbitrary) design decisions encoded in the
legacy code, and identifying fresh domain abstractions. To this
end, we propose to first recover the functionality that needs to
be preserved and describe it at the right level of abstraction.

Recovery can be achieved through reverse engineering [1].
Unfortunately, when the code is the main source of infor-
mation, recovery can be hard [8]. However, leaving the old
code behind enables redesigns with big changes in class
hierarchies [9], code size, and use of design patterns [10].

Redesign Process

In our experience, the legacy components that need attention
are known to developers. However, by the very nature of these
components, the developers’ understanding of them is limited,
and often there is no clear vision for a redesign.

To carry out a redesign in a controlled and manageable
manner, we use a model-based process (see Figure 1). The
process is based on a reference design, i.e., a high-level design
for the type of component considered. The reference design
is used both to regain understanding of the legacy code and
to create the redesign. However, we do not assume that the
legacy code is based on the reference design.

To structure the process, and based on our experiences,
we propose to use three intermediate models, summarized in
Table I. The models are obtained and processed as follows:

1) The legacy code is analyzed. Guided by the reference
design, unit specific code fragments are extracted into a
legacy model, and reusable code fragments are stored.

2) The legacy model, consisting of extracted fragments in
terms of the old design, is unfolded into a flat model. The

Legacy Code

Legacy Model

Flat Model

Redesigned Model

Redesigned Code

extract

unfold refold

construct
(one-of-a-kind)

generate
(variation)

store
Documentation

Reference Design

validate

validate
validate validate

Fig. 1. The redesign process with its reference design and three models

TABLE I
THE THREE MODELS AND THEIR ROLES

Model Focus Primitives
Legacy Extracted code Old design
Flat Functionality External interfaces
Redesigned Variation points New design

flat model is design independent and defines the com-
ponent’s functionality in terms of external interfaces.

3) The flat model is refolded into a redesigned model by
uncovering the variation points of the flat model. As a
result, fresh domain abstractions for a new design are
also obtained.

4) New code is constructed based on the reference design
and fresh domain abstractions. The redesigned model
is used to generate code for the variation points, and
the code fragments stored in the first step are used to
implement the one-of-a-kind functionality.

All the models are domain-specific (and platform-indepen-
dent [11], [12]) models of the functionality. The models
and code are manually inspected once generated, and the
redesigned code is validated against the legacy code. The
model extraction is based on analysis techniques tailored to
a specific scope [13]. As a rule, when moving from left to
right in Figure 1, the models tend to become smaller, while
understanding improves.

Observe that the redesign process combines a bottom-up
reverse engineering approach (via code extraction) with a top-
down approach (via a reference design) [1]. The combination
maximizes understanding of the code to enable the redesign.

Research Method and Contributions

We conducted the reported research as an exploratory case
study [14], with applied researchers and software developers
collaborating in an industrial environment. The case study
concerned the redesign of an industrial adapter component
of a large embedded system. The proposed three models
were developed and evaluated in the context of the adapter
component, which internally consists of seven adapters.

Our main contributions are:

• A redesign process centered around three models, whose
aim is to regain understanding while transforming legacy
code into a new implementation (Section III).

• An approach to partially automating the redesign process
using parsing techniques, pattern matching, model trans-
formation, and similarity detection (Section IV).

• A demonstration of the effectiveness of the redesign
process on an industrial legacy component (Section V).

II. CASE STUDY: AN INDUSTRIAL ADAPTER

Our industrial case study focuses on an adapter component
of a control module. The control module is part of a large
embedded system. The components of the module interact us-
ing Microsoft’s COM (Component Object Model) technology,
and, hence, are platform dependent. A long term goal is to
redesign the complete control module to reduce code size,
accidental complexity, and platform dependence.

Adapters are conceptually simple, but in industrial practice
there are often many adapters. Their implementations can also
be rather complex due to the various interface technologies
involved. These characteristics make adapters a relevant ap-
plication domain for redesign processes.

The considered adapter has a substantial amount of COM-
related interface code that is not isolated from the core
functionality. We aim to redesign the adapter in order to reduce
code size and accidental complexity, and to ease replacing
COM technology with a platform independent solution.

As our goal is to isolate COM-related code in separate
layers, our work is related to [6]. However, while [6] focuses
on detecting mismatches and other peculiarities in COM-
related glue layers, we focus on redesigning a component.

A. Accidental Complexity

The considered adapter component consists of 21 thousand
lines of C++ code distributed over 128 classes and 258 files.
The component was developed 5–6 years ago by 4 developers,
who no longer work on the component. The component is
considered to be difficult to understand, maintain, and extend.

Manual code inspection identified several kinds of acciden-
tal complexity:
• Substantial amounts of code duplication as a consequence

of inductive evolution and little use of libraries, in partic-
ular little use of libraries for common data conversions.

• Over-enthusiastic use of design patterns that make it
difficult to understand the functionality.

• Almost 400 occurrences of very verbose COM interac-
tions occurring in 79 of the 128 classes.

Triggered by the above observations, we measured code
duplication with two often used tools:
• PMD1, with a standard clone length of 100 tokens, reports

22 clones leading to a code duplication ratio of 4%.
• Simian2, with a standard clone length of 10 lines, reports

138 clones leading to a code duplication ratio of 14%.

1http://pmd.github.io/
2http://www.harukizaemon.com/simian/

http://pmd.github.io/
http://www.harukizaemon.com/simian/

XML input:
<StartFunc Channel="ALLCHANNELS">
<AcquisitionChannel>FRONTAL</AcquisitionChannel>

</StartFunc>

Actions:
1) Extract the AcquisitionChannel value.
2) Convert the value to a dedicated data type.
3) Pass the value to the associated Command.
4) Pass a cookie (provided as a separate parameter in

the incoming RPC call) to the Command.
5) Lock, execute, and unlock the Command.

Fig. 2. The StartFunc Executer function

The owner of the component also uses PMD to measure code
duplication. Unfortunately, the duplication ratios do not reflect
the actual amount of duplication we found. This is mostly due
to the tools not being able to identify Type-3 clones (identical
fragments modulo different subfragments) [15]. Hence, we
consider the tools not very suitable in support of a redesign.

B. Adapter Mappings and COM Technology

The adapter component connects a Frontend to a Backend.
The Backend sends and receives XML data via a Remote
Procedure Call (RPC) interface. Communication with the
Frontend is COM-based, and uses a library with custom
implementations of two common design patterns [10]:
• the Command pattern, whose implementations are re-

ferred to as Commands in the code base, and
• the Observer or Publish-Subscribe pattern, whose imple-

mentations are referred to as UI-Subjects.
Commands and UI-Subjects are managed by CommandMan-
agers and UI-Models, respectively.

Internally, the considered adapter component consists of
seven adapters, each connecting a specific pair of interfaces,
for a total of 162 function mappings. We redesigned all
mappings. The bulk of the functionality relates to 44 mappings
referred to as Executers and 66 mappings referred to as Report
Parameters. The Report Parameters encompass more than half
the classes: 84 out of 128.

Executers: Each Executer receives XML input from the
Backend and executes an associated Command in the Fron-
tend. Figure 2 gives typical XML input (for the StartFunc
Executer) and specifies actions that should be performed.

Report Parameters: Each Report Parameter observes mul-
tiple UI-Subjects in the Frontend. When the value of a
UI-Subject changes, a Report Parameter reports this to the
Backend via an XML message. Figure 3 provides an exam-
ple of a Report Parameter (Step_Duration) observing a
UI-Subject of type LONG. The figure gives a typical input
event (LongItemChanged(4)), describes the actions to
be performed when reporting a change, and specifies the
resulting XML send to the Backend. This particular Report

Input event:
LongItemChanged(4)

Actions:
1) Store the parameter value of the event.
2) Collect the most recent value of each related UI-

Subject, and apply any required data conversions.
3) Create and send an XML message with all values.

XML output:
<Step_Duration Status="ENABLED" Channel="ALLCHANNELS"
ValueStatus="KNOWN" ValueChanging="false">

<Duration Min="1" Max="20" StepSize="1">4</Duration>
</Step_Duration>

Fig. 3. The Step_Duration Report Parameter function

Domain

Core

Instantiation

Orchestration

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

Fig. 4. Adapter component reference design

Parameter also observes five other UI-Subjects, as reflected
by the additional attributes in the resulting XML.

III. THE REDESIGN PROCESS

We next detail our redesign process, first considering the
reference design, before expounding on each of the three
models and the redesigned code. We illustrate the process by
means of the adapter component introduced above.

A. Reference Design

The reference design describes an ideal high-level design
of the type of component being redesigned, and serves two
purposes. First, irrespective of the legacy design, the reference
design provides a frame of reference that we can use to recover
our understanding of the legacy code. Second, the reference
design serves as a basis along which we can structure our
redesigned code.

Case Study: In the case of an adapter component, we use
the reference design of Figure 4. This design generalizes the
adapter designs of [16].

The layers of the design of Figure 4 are intended to separate
the instantiation of function mappings from the core design
and domain primitives; they also isolate interface specific code.
The layers are as follows:

1) Orchestration: creation of mappings and interfaces;
2) Instantiation: unit-specific mappings;

TABLE II
DEFAULT CLASSIFICATIONS FOR ADAPTER LEGACY CODE

Layers Extract Store Drop
Orchestration 3
Instantiation 3

Core 3 3
Domain 3

Interface 3

3) Core: design primitives (reusable by sibling units);
4) Domain: domain primitives (types and conversions);
5) Interface: interaction with neighboring components.

In inductively-evolved adapter components, the separation
between the layers is often not clear. This specifically holds
for the code representing the Instantiation and Core layers.

In the case of our concrete adapter component, the Instanti-
ation and Core layers are defined by the 162 mappings of the
seven adapters. The Domain layer is represented by the data
types and conversion routines relevant to the embedded sys-
tem, and the Interface layers are represented by the employed
COM and RPC technologies.

B. Legacy Model Extraction

The redesign process, as depicted in Figure 1, starts by
classifying the legacy code and creating a legacy model. We
use the following classification categories:

1) Extract code fragments that express parameters of sib-
ling units. The parameters are extracted (in an automated
fashion) and added to the legacy model.

2) Store code clones that are used by multiple sibling units.
The clones are later turned into reusable routines. The
discriminating properties of the clones are put in the
legacy model, and will be passed as parameters to the
reusable routines.

3) Drop all non-essential legacy code. This is mainly code
that exists as a result of previous design decisions,
and includes logging and tracing code, wrappers, class
hierarchies, and redundant design patterns.

Each part of a reference design has one or more default
associated classification categories, as shown in Table II for
our adapter design.

We classify our legacy code incrementally. Initially, we may
decide to drop all code fragments, but when later analysis and
generation steps demand it—or to improve understanding—
we may decide to extract or store additional fragments. With
regard to understanding, we often find that we need to extract
more fragments than strictly necessary for a redesign (see also
Section III-D).

Once we have an initial classification, we manually for-
malize code patterns for the fragments to be extracted. We
use the patterns to automate the extraction of the legacy
model. In Section IV-A, we discuss the technology behind
the automation.

In our experience, it is quite easy to overlook (essential
or accidental) code variation. Hence, the automated process
reports upon code fragments that do not match our formalized

invoke : CreateStartFunc(
"StartFunc",
ALLCHANNELS,
[componentId : CLSID_COASCAppStateController,
methodCall : IASC.GetCommandManager])

CreateStartFunc(Name, Relevance, CmdManager) ->
manager : CmdManager
command : CommandIDASC.StartFuncCmd
invoke : CCmdStartFunc(Name, "StartFunc", Relevance)

CCmdStartFunc(FuncName, PropName, Relevance) ->
function : FuncName
property : PropName
channel : Relevance
execute : extract "AcquisitionChannel" :

apply StringToCHN yielding CHN
set IASCSetCHN.SetCHN

extract COOKIE :
set IASCCommandCookie.SetCookie

Fig. 5. The legacy model of StartFunc

patterns. To reduce the number of false positives, we also
define patterns for typical code fragments that need to be
dropped (such as logging statements), allowing us to ignore
these automatically.

In the legacy model, we aim for a level of granularity
that matches the level at which developers reason about the
code. For example, although the code may locally consist
of a number of small computation steps, we typically do
not represent each individual step. Instead, we symbolically
evaluate the steps to keep the extracted model manageable and
understandable. For example, when we encounter y=2*x
followed by y=y+1 in the legacy code, we oftentimes
represent this in the model by y=2*x+1.

Case Study: Figure 5 presents the legacy model extracted
for the StartFunc Executer of Figure 2. The first block of
Figure 5 describes an invocation of the initialization method
described in the second block. The third parameter in the
invocation refers to the CommandManager managing the
Command executed by StartFunc. In the legacy code, a
pointer to the CommandManager class is passed; here we
simply provide sufficient identifying information to obtain a
pointer. The second block defines two attributes (manager
and command) and invokes the constructor described in the
third block, which defines four more attributes.

The execute attribute in the third block of Figure 5
represents the code of Figure 6; note that the representation
is very compact compared to the code. Figure 6 contains the
two main methods of StartFunc. After having stored the
parameter lCookie in the class member m_llCookie at
line 15, the first method calls the second at line 16. During
model extraction, we inline the call to avoid distinguishing
between the methods in the created model, which matches the
way the developers reason about the code.

We handle the code of Figure 6 as follows during extraction:

1) Lines 3–5 obtain the value of AcquisitionChannel

1 void CCmdStartFunc::deserializeAndExecute(
2 XMLNode& rNode, LONGLONG lCookie) {
3 // Get "AcquisitionChannel" string value from the input
4 CString sChannel =
5 rNode.GetElement("AcquisitionChannel")->GetStringValue();
6 // Convert string to CHN, store value
7 if (sChannel.CompareNoCase("FRONTAL") == 0) {
8 m_eChannel = CHN_FRONTAL;
9 } else if (sChannel.CompareNoCase("LATERAL") == 0) {
10 m_eChannel = CHN_LATERAL;
11 } else {
12 m_eChannel = CHN_BIPLANE;
13 }
14 // Store cookie
15 m_llCookie = lCookie;
16 executeUICommand();
17 }
18
19 void CCmdStartFunc::executeUICommand() {
20 // Get associated Command
21 IInfraCommand *pInfCmd = GetUICommand();
22 if (pInfCmd != NULL) {
23 bool bResult =
24 Lock(pInfCmd, CCmdPerformFunctionCommand::v_unPriority);
25 if (bResult) {
26 IASCSetCHN* pSetCHN = NULL;
27 HRESULT hr = pInfCmd->QueryInterface(
28 INFRA_IID_PPVOID(IASCSetCHN, &pSetCHN));
29
30 if (SUCCEEDED(hr)) {
31 // Pass CHN value to Frontend
32 if (pSetCHN != NULL) {
33 hr = pSetCHN->SetCHN(m_eChannel);
34
35 if (SUCCEEDED(hr)) {
36 IASCCommandCookie* pIASCCommandCookie = NULL;
37 HRESULT hr = pInfCmd->QueryInterface(
38 INFRA_IID_PPVOID(IASCCommandCookie, &pIASCCommandCookie));
39
40 if (SUCCEEDED(hr)) {
41 // Pass cookie value to Frontend
42 if (pIASCCommandCookie != NULL) {
43 hr = pIASCCommandCookie->SetCookie(m_llCookie);
44
45 // Execute associated Command
46 if (SUCCEEDED(hr)) { HRESULT hRes = pInfCmd->Execute(); }
47 pIASCCommandCookie->Release();
48 pIASCCommandCookie = NULL;
49 }
50 }
51 }
52 pSetCHN->Release();
53 pSetCHN = NULL;
54 } else {
55 hr = E_FAIL;
56 }
57 }
58 bResult = Unlock(pInfCmd);
59 }
60 CGenUtilities::releaseAndNull(pInfCmd);
61 }
62 }

Fig. 6. The two main methods of StartFunc

from the provided XML. We extract Acquisition-
Channel and add it as a parameter to the legacy model;
the parameter belongs to the Instantiation layer. The
remainder of the fragment is stored, to become part of
the Interface layer.

2) Lines 6–13 convert a string to an element of type CHN.
We store the fragment; the conversion belongs to the
Domain layer. The type CHN is specific to StartFunc
and is put into the legacy model together with a reference
to the conversion.

3) Lines 26–33 pass the converted value to a Command.
The code is COM-specific and belongs to the Interface
layer. We store the fragment together with lines 52–
53 (responsible for clean-up). The IASCSetCHN and
SetCHN values are specific to StartFunc and are put
into the legacy model.

4) Lines 36–43 pass a cookie to the Command. The code
is again COM-specific and belongs to the Interface
layer. We store the fragment together with lines 47–48
(responsible for clean-up). The IASCCommandCookie

manager :
componentId : CLSID_COASCAppStateController
methodCall : IASC.GetCommandManager

command : CommandIDASC.StartFuncCmd
function : "StartFunc"
property : "StartFunc"
channel : ALLCHANNELS
execute : extract "AcquisitionChannel" :

apply StringToCHN yielding CHN
set IASCSetCHN.SetCHN

extract COOKIE :
set IASCCommandCookie.SetCookie

Fig. 7. The flat model of StartFunc

and SetCookie values are specific to StartFunc
and are put into the legacy model.

5) Lines 20–25, 45–46, and 58–60 lock, execute, and
unlock the Command. This functionality belongs to the
Core layer; we store the fragments.

Note that the Interface related fragments (lines 26–33 and
36–43) are similar, but differ slightly with respect to error
handling (the assignment at line 55 technically belongs to the
first fragment). Manual analysis revealed that the difference is
accidental and that the code at line 55 can be dropped, making
the fragments homogeneous, and enabling us to reduce the
amount of stored code.

Although the adapter component was implemented manu-
ally, the amount of incidental variation among the Executers
is limited due to their inductive evolution. All Executers are
structured similarly, and parameters are easily extracted.

C. Model Unfolding

In order to gain insight in the legacy code’s functionality,
the next step is to eliminate old design decisions. To this end,
we unfold the legacy model into a flat model. In practice,
this involves removing design patterns, inlining methods, and
simplifying data- and control-flow. We use automation to avoid
mistakes. In contrast to the local symbolic evaluation applied
during model extraction, this step focuses on global reductions.

Case Study: The three blocks of the legacy model of
Figure 5 form a call chain. The first block provides a number
of parameters and invokes the second block. In turn, the second
block is similar and invokes the third block. We eliminate the
call chain to obtain the flat model of Figure 7.

D. Model Refolding

In the refolding step, we analyze the flat model and intro-
duce fresh domain abstractions. We look for model fragments
that occur multiple times, or depend on each other. In general,
we strive for compactness (not as an independent goal, but as
a guideline) to avoid code duplication later on.

In this step it may also become clear that the legacy and flat
models contain more information than strictly required for a
redesign (although the additional information may have been
used to regain understanding). Unexpected inconsistencies in
the functionality may also be revealed during this step, and
may be manually repaired as part of the refolding.

APPLICATION_STATE_CONTROLLER :
identifier : CLSID_COASCAppStateController
interface : IASC
command prefix : CommandIDASC

"StartFunc" / ALLCHANNELS ->
component : APPLICATION_STATE_CONTROLLER
command postfix : StartFuncCmd
execute : pass "AcquisitionChannel"<CHN>

pass COOKIE

Fig. 8. The redesigned model of StartFunc

Case Study: For StartFunc we obtain the redesigned
model of Figure 8 from the flat model of Figure 7 via the
following steps:

1) In the flat model, the manager field always has
two attributes: componentId and methodCall, with
the method name in the call attribute always being
GetCommandManager. Hence, we drop the method
name (leaving the interface name).

2) In addition to the above, there is a one-to-one correspon-
dence between interface names and componentId
values. Hence, we apply abstraction. We do this by
splitting off combinations of componentId values
and interface names into a separate model concept (an
example of which is depicted in the first block of
Figure 8).

3) The correspondence between prefixes of command
values and componentId values is also one-to-one.
Hence, we also add the prefix (CommandIDASC in the
case of StartFunc) to the model concept introduced
in step (2).

4) The property attribute is always identical to the
function attribute, with the former being a left-
over of an old design decision. Hence, we drop the
property attribute.

5) The combination of the function and channel
attributes is unique, and forms a logical key. Hence,
we use the combination to identify Executers (such as
StartFunc).

6) If a cookie is processed, then this is always done in the
same manner. Hence, we store the details and represent
the processing by the clause pass COOKIE.

7) If an attribute must be passed, such as Acquisition-
Channel in the case of StartFunc, then there are
only two relevant parameters: attribute name and type. In
the redesigned model we make this explicit by omitting
all other parameters. We do note that the other parame-
ters aided us while trying to understand the functionality.

In Section IV-C, we discuss an automated technique that
supports identifying the above variation points and implied
abstractions.

Observe that the structure of the redesigned model of
Figure 8 differs significantly from that of the legacy model of
Figure 5. In fact, the differences are even greater, as another

AddExecuter(
CExecuter::CreateInstance(
"StartFunc",
ALLCHANNELS,
APPLICATION_STATE_CONTROLLER),

CommandIDASC::StartFuncCmd,
CExecSetValueCmdXML<CHN>::CreateInstance(
"AcquisitionChannel"),

CExecSetValueCmdCookie::CreateInstance());

Fig. 9. The code generated for StartFunc

major restructuring occurred not visible in the figure: in the
legacy code (and, hence, in the legacy and flat models) some
adapter mappings were grouped by Backend interface, whereas
in the redesign (and the redesigned model) we grouped them
by Frontend interface. This led to a reduction in the number
of model concepts, allowing for more reuse.

For the Report Parameter mappings (not shown), the flat
model had become very detailed in order to capture all
functionality (not in the least because of the large number
of UI-Subjects associated with each Report Parameter). The
redesigned model helped to improve understanding of the few
essential variation points, which in turn helped to generate
better code. We also found a few inconsistencies in data
conversions. In particular, the processing of initial values
sometimes differed subtly from the processing of subsequent
values. In practice, these inconsistencies were immaterial, and
we uniformized the conversion routines during the redesign.

E. Code Generation and Code Construction

The new software design is based on the reference design
and the domain abstractions identified during construction
of the redesigned model. The redesigned model is used to
generate the code for the variation points, while all one-
of-a-kind code is either based on stored code fragments, or
manually redeveloped.

Case Study: In the case of our industrial adapter component,
we constructed and generated the various layers as follows:
• Orchestration. During extraction of the legacy model we

stored the fragments responsible for orchestration. We
reused these fragments to construct the Orchestration
layer.

• Instantiation. For each of the 7 adapters, we gener-
ated a class that defines its mappings. In the case of
StartFunc, we generated the code of Figure 9 from
the second block of Figure 8. The structure of the code
clearly resembles that of the model, and, as such, we can
consider the Instantiation layer to use an embedded or
internal DSL [17].

• Core. This layer was constructed manually based on the
new domain abstractions. The class hierarchy used in the
layer differs significantly from the legacy hierarchy.

• Domain. This layer consists of the data conversions that
were stored during model extraction.

• Interface. Like the Domain layer, this layer mostly con-
sists of stored functionality. We also generated part of

IASC*
InterfaceProxy::GetAppStateController() {
if (m_pASCAppStateController == nullptr) {

DO_FUNC(::CoCreateInstance(
CLSID_COAppStateController,
nullptr,
CLSCTX_LOCAL_SERVER,
INFRA_IID_PPVOID(IASC, &m_pAppStateController)));

}
return m_pAppStateController;

}

ICommandManager*
InterfaceProxy::GetCmdMngrAppStateController() {
if (m_pCmdMngrAppStateController == nullptr) {

DO_FUNC_ALLOW_ERROR(
GetAppStateController()->GetCommandManager(

INFRA_IID_PPIUNK(
ICommandManager,
&m_pCmdMngrAppStateController)));

ACCEPT_COM_ERROR(E_NOTIMPL);
END_FUNC;

}
return m_pCmdMngrAppStateController;

}

Fig. 10. The code generated for acquiring a pointer to a CommandManager

the layer to enable accessing the Frontend in a uniform
manner. For example, the code of Figure 10 was gener-
ated from the first block of Figure 8. The code is used
to acquire a pointer to the CommandManager referenced
by StartFunc.

In addition to code, we also generated documentation de-
scribing all mappings and their properties in tabular form.
The documentation served as a basis for communication with
stakeholders.

F. Validation

The models generated during the redesign process are
inherently incomplete, as they focus on distinguishing features.
Although we do complement the models with stored code
fragments, even this does not fully capture the functionality:
some functionality is dropped during extraction only to be
redeveloped later. As a result, it is next to impossible to
formally prove the correctness of the redesign with respect to
the legacy implementation [18], [19]. The situation is further
complicated if we purposefully deviate from the original
functionality in order to make the redesign more uniform, e.g.,
by removing inconsistencies between clones [20].

Given the above, our validation strategy is two-fold:
1) inspect each model once generated (early fault detec-

tion);
2) test the redesigned implementation (final check).
For model inspection it is important that the models are

human readable. For testing we use (and refine) the exist-
ing test suites of the legacy implementation. Alternatively,
we could have used the approach from [21], which applies
model learning and equivalence checking to the legacy and
redesigned implementations.

The expected quality of the validation influences the amount
of risk we may take during the redesign. For example, by

if ($in.CompareNoCase("FRONTAL") == 0) {
$out = CHN_FRONTAL;

} else if ($in.CompareNoCase("LATERAL") == 0) {
$out = CHN_LATERAL;

} else {
$out = CHN_BIPLANE;

}

Fig. 11. A code pattern for extracting a data conversion

ignoring (apparently irrelevant) code during extraction, the
redesign may proceed faster, but we need to be able to verify
that the code was indeed irrelevant (which requires high-
quality validation).

Case Study: During the redesign of the adapter component,
we manually inspected each of the generated models after each
iteration. This provided valuable feedback, and led to many
improvements in the models, especially during early iterations.

With regard to testing, the adapter component, as part of
a much larger control module, can currently only be tested
as part of that module. The test suite of the module consists
of around a thousand test cases, which generate about 18
million lines of log data. Besides validating the redesigned
component by exercising the test suite, we also compared the
log data of the legacy and redesigned implementations (see
also Section IV-D). This comparison was instrumental in the
discovery of a number of issues with early versions of the
redesigned component.

The final version of redesigned component passed all tests
of the legacy component (when embedded in the much larger
control module), and was transferred to the responsible devel-
opment team.

IV. AUTOMATION IN THE REDESIGN PROCESS

We next discuss the automation we used in our case study.

A. Processing Industrial Code

To enable automatic extraction of a legacy model, we parse
the legacy code. In our case study, we used Eclipse CDT’s
C++ parser, following the approach of [6].

Processing C++ parse trees is rather involved and has
a steep learning curve. To ease model extraction, we have
implemented a small library that handles common extraction
operations. The library includes operations such as extracting
function names, return types, and function parameters.

The library also provides a pattern matching facility, which
we used during the pattern formalization and model extraction
process discussed in Section III-B. The patterns are written
using concrete syntax (see Figure 11 for an example, where
identifiers starting with $ denote placeholders). The library
supports both exact matches and iterating through lists (of
statements) to search for occurrences of patterns.

B. Model Transformation Technology

The intermediate results of our redesign process are models
obtained through model transformation. To effectively develop

and perform the model transformations, we require the follow-
ing from the model technology we use to automate them:
• Each transformation should be runnable and debuggable

in isolation. Hence, the models should be machine pro-
cessable.

• It should be possible to validate intermediate results.
Hence, the models should have a human readable rep-
resentation.

• It should be easy to construct code generators.
In our case study, we used textual models that are both

machine processable and human readable. Each model was
based on its own domain-specific language (DSL), which we
developed using Xtext.3

All model-to-model transformations were implemented as
model-to-text transformations in Xtend4 in order to avoid
building large expression trees in terms of abstract syntax.
A drawback to this approach is that syntax definitions are
duplicated: each definition is encoded both implicitly in the
text generation process of one transformation, and explicitly
in the parser of the subsequent transformation.

Alternatively, we could have used model-to-model trans-
formations, and relied on serializers and formatters to ob-
tain human readable representations, e.g., using the MoDisco
framework [22]. Unfortunately, MoDisco currently does not
support C++. Tools such as Rascal [23], which combine con-
crete and abstract syntax, might offer an alternative approach:
they avoid the dichotomy between model-to-text and model-
to-model transformations.

C. Similarity Detection

During model extraction and refolding, we look for natural
patterns and abstractions. To find these, we experimented with
a similarity analysis based on token-frequency vectors. It is
not yet clear how generic this technique is, but initial results
are promising. The technique is able to detect Type-3 code
clones—contrary to the tools explored in Section II-A—and
is mostly language independent. We give a brief overview of
the technique.

The technique starts by splitting the code, or model, into
fragments. In the case of code, the fragments are usually files
or methods. In the case of models, they are usually modeling
constructs used for grouping, e.g., the construct describing
StartFunc in Figure 7. Next, each fragment is split into
tokens, and tokens representing punctuation (such as braces,
semicolons, etc.) are dropped. The technique is now applied
in one of two ways to the remaining tokens:
• Token similarity. For each token x we construct a token-

frequency vector counting for every token y the number
of fragments containing both x and y. We use the vectors
to analyze which tokens always occur together, and,
hence, may be combined into a single model concept.

• Fragment similarity. For each fragment F we construct
a token-frequency vector counting for every token y the

3http://www.eclipse.org/Xtext/
4http://www.eclipse.org/xtend/

0.92

StringToCHN 1.00

IASCSetCHN SetCHN

Fig. 12. A token-similarity diagram

number of occurrences of y in F . We use the vectors
to analyze which fragments are similar, and, hence, are
candidates to become (parameterized) model concepts.

We perform two operations on the token-frequency vectors:

• Similarity computation. The similarity between two to-
ken-frequency vectors is expressed as a ratio between 0
and 1. We compute the ratio as the cosine similarity of the
vectors; ratios above 0.8 are typically interesting. Based
on the ratios we draw token-similarity diagrams using
hierarchical cluster analysis.

• Discriminator computation. Given two token-frequency
vectors with high similarity, the difference between them
is a vector of discriminating tokens. If a model concept
is introduced based on the highly similar vectors, the
discriminating tokens are likely to become parameters.

An example of a token-similarity diagram can be found in
Figure 12. The diagram is computed from our case study’s flat
model (of which Figure 7 is part). The value of 1.00 indicates
that the interface IASCSetCHN always occurs in combination
with the method SetCHN. This suggests that the interface and
method may be combined, as we actually did in Section III-D.

The method StringToCHN has a similarity value of 0.92
when compared to the other two tokens of Figure 12. Further
investigation showed that the method StringToCHN also
occurs in combination with another interface (not shown).

We also applied the similarity detection technique to the
methods occurring in the legacy code base. This exposed sig-
nificant similarity between the deserializeAndExecute
and executeUICommand methods of the StartFunc Ex-
ecuter (as depicted in Figure 6), and the sibling methods of
all other Executers. The discriminators revealed precisely the
parameters we extracted from the methods in Section III-B.

Because our technique is rather coarse, it gives rise to far
less false negatives than the tools explored in Section II-A
On the other hand, our technique may also give rise to more
false positives, because the structure of the code or model is
ignored. However, in practice, this latter effect seems to be
limited, especially when small fragments are excluded from
the analysis.

The idea to detect similarity between code fragments using
vectors of tokens is not new [24], [25]. However, our use of
the cosine similarity to compute similarity ratios leads to a
simpler technique.

http://www.eclipse.org/Xtext/
http://www.eclipse.org/xtend/

TABLE III
CODE METRICS FOR THE INDUSTRIAL ADAPTER

Files LoC LoC% Gen Stored
Legacy total 258 21288

Orchestration 6 282 4% 0% 100%
Instantiation 14 1616 21% 100% 0%

Core 47 2572 33% 0% 20%
Domain 6 639 8% 0% 100%

COM Interface 32 2426 31% 41% 40%
XML Interface 7 276 4% 0% 100%
Redesign total 112 7811 100% 33% 34%

D. Test Suite Refinement Using Log Data

Before embarking on the redesign of a component, we
perform a semi-automatic analysis of the log data produced
while running the test suite (of either the component, or of
some larger module it is part of). From the log data we extract
input/output-pairs describing the behavior of the component.
If these pairs cannot be extracted, we extend the legacy
implementation to generate them.

Running the test suite against the legacy component, we ob-
tain reference input/output-pairs. The pairs allow us to assess
test coverage and, consequently, allow us to determine the risks
that can be taken during a redesign (see also Section III-F).
Availability of the pairs also offers the following opportunities:
• Refine existing test suites by comparing input/output-pairs

generated during testing with the reference pairs; this may
reveal errors even if testing succeeds. The comparison
may not be entirely trivial as we may have to abstract
from certain differences, e.g., those due to thread or
process scheduling.

• Create unit tests based on the reference pairs (if unit tests
do not yet exist). Each pair can be turned into a test case.

• Improve test coverage based on input/output-pairs that are
missing from the reference set.

Note that the idea to exploit log data for testing is not new
and has been explored elsewhere [26].

V. CASE STUDY: EFFECTIVENESS OF THE REDESIGN

Table III presents code metrics for both the legacy and
redesigned implementations of the industrial adapter from our
case study. The metrics for the redesigned implementation are
broken down per layer of the adapter reference design. Since
the source files of the legacy implementation often relate to
multiple layers, we do not provide a similar breakdown for
this implementation: any division would be arbitrary.

For both implementations, Table III indicates the number of
files, and lines of code (LoC)—where a line of code is defined
as any non-empty, non-comment line that does not consist
entirely of punctuation. For the redesigned implementation the
table also indicates the relative size of each layer with respect
to total component size (LoC%). The column Gen (Generated)
indicates the percentage of LoC generated from the redesigned
model. The column Stored estimates the percentage of LoC
derived from stored code fragments.

Our redesign reduced code size by a factor of almost 3.
As already touched upon in Section II-A, using PMD or
Simian to guide a step-wise refactoring would most likely not
have resulted in a similar code reduction: PMD and Simian
only report 4% and 14% code duplication for the legacy
implementation, respectively.

The redesign process led to the identification of fresh
domain abstractions and primitives, which we implemented
manually, encompassing 80% of the Core layer and 19% of the
COM Interface layer, or, in total, 33% of the redesigned im-
plementation. Although significant in terms of the redesigned
implementation, this only amounts to 12% of the original code
base, with similar amounts having been generated and derived
from stored code fragments.

Change Scenarios: In the redesigned implementation we
can deal with typical changes in the following ways:
• Add/modify an adapter mapping. Adding or modifying

a mapping affects only a single defining clause in the
Instantiation layer. Hence, we estimate that a mapping can
be added or changed within an hour. Before, an addition
or change could easily take in excess of two days.

• Add a new mapping type. Adding a mapping type is
not likely to be required, as a large number of types is
already supported. However, if such a change does need
to be made, some complexity is involved, as it most likely
affects both the Core and Instantiation layers.

• Change a common implementation pattern. Similar to
adding a mapping type, changing an implementation
pattern is not likely to be required. However, if such a
change does need to be made, it will only affect a single
layer (i.e., the Core, Domain, or Interface layer), as each
individual pattern is contained in a single layer.

• Replace COM technology. Replacing COM technology
will affect the COM Interface layer only; other layers
can be left unchanged. Originally, most of the code would
need to be touched.

Given the above observations, we can consider the deployed
architecture [27] of the redesigned component to consist
of the Core layer, as it is the only layer that is hard to
change. This is in stark contrast to the legacy implementation,
which was hard to change overall. Hence, besides substantial
code reduction, we also significantly reduced the size of the
deployed architecture.

VI. THREATS TO VALIDITY

Threats to internal validity come from the way in which
we carried out our case study. Although we employed the
legacy and flat models from the start based on earlier ex-
periences, the redesigned model was only introduced after
several iterations—initial versions of the process generated
code directly from the flat model. Although this is the case, we
did see substantial improvements in quality of the generated
code once we introduced the redesigned model and, hence,
consider the redesigned model to be important.

Threats to construct validity come from the way in which
we evaluated our case study. In particular, the considered

change scenarios and associated time estimates do not derive
from actual observations. We do expect the change scenarios
and time estimates to be accurate, as they were established as
part of discussions with stakeholders.

Threats to external validity come from the way in which the
results will generalize to other software components. We only
considered seven different (but somewhat related) adapters,
and plan to perform further case studies to establish whether
our techniques generalize to other software components.

VII. CONCLUSIONS AND FUTURE WORK

In iterative software development, code often evolves in-
ductively by copying and modifying earlier developed units.
Initially this may be the way forward, but once functionality
and variation points become clear, the code should be re-
designed to ensure maintainability. In our experience, many
industrial software components have substantial amounts of
code duplication due to inductive evolution.

We proposed a semi-automated redesign process that fo-
cuses on regaining human understanding and identifying fresh
domain abstractions. The process combines a top-down ap-
proach based on a reference design, with a bottom-up approach
based on transformations of legacy code into a redesigned
implementation via three models. The reference design is used
to understand the legacy code, to steer the model extraction,
and to guide the new design.

The three proposed models are used to ensure that previous
design decisions are forgotten before new decisions are made.
This helps to ensure that the new design does not resemble
the old one. Each subsequent model is more compact than
the previous one, reflecting an increasing understanding of the
essential functionality and variation points.

We illustrated the effectiveness of the redesign process by
presenting an industrial case study concerned with the redesign
of an adapter component. Using the process, we reduced the
size of the component by a factor of almost 3. About 12% of
the original code was carried over to the new implementation,
and a similar amount of code was manually redeveloped.
Due to proper layering of the redesigned component, we
estimate that future changes will take significantly less effort.
In particular, the code related to COM interface technology
has been isolated, which facilitates easy replacement.

As inductive evolution and adapter components are om-
nipresent in industrial practice, we expect that numerous of
legacy components could benefit from our approach. In each
case, we will need to select or define an appropriate reference
design and appropriate domain-specific modeling languages.

As future work, we plan to further evaluate our redesign pro-
cess while redesigning other industrial software components.
We also intend to study other techniques for discovering code
and model patterns that could be used to identify abstractions
during the extraction and refolding steps.

REFERENCES

[1] S. Tilley, S. Paul, and D. Smith, “Towards a framework for program
understanding,” in WPC’96, 1996, pp. 19–28.

[2] V. Basili and A. Turner, “Iterative enhancement: A practical technique
for software development,” IEEE Trans. Software Eng., vol. 1, no. 4,
pp. 390–396, 1975.

[3] D. Faust and C. Verhoef, “Software product line migration and deploy-
ment,” Softw. Pract. Experience, vol. 33, no. 10, pp. 933–955, 2003.

[4] M. Fowler, Refactoring: Improving the Design of Existing Code. Ad-
dison Wesley Longman, 1999.

[5] R. Khadka, P. Shrestha, B. Klein, A. Saeidi, J. Hage, S. Jansen, E. van
Dis, and M. Bruntink, “Does software modernization deliver what it
aimed for?” in ICSME’15, 2015, pp. 477–486.

[6] A. Mooij, M. Joy, G. Eggen, P. Janson, and A. Rădulescu, “Industrial
software rejuvenation using open-source parsers,” in ICMT’16, 2016,
pp. 157–172.

[7] M. van den Brand, A. Sellink, and C. Verhoef, “Generation of compo-
nents for software renovation factories from context-free grammars,” in
WCRE’97, 1997, pp. 144–153.

[8] A. Eastwood, “It’s a hard sell–and hard work too (software reengineer-
ing),” Computing Canada, vol. 18, p. 35, 1992.

[9] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented Reengi-
neering Patterns. Morgan Kaufmann, 2003.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[11] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J. Jézéquel, “Model-
driven engineering for software migration in a large industrial context,”
in MoDELS’07, 2007, pp. 482–497.

[12] M. Grieger, M. Fazal-Baqaie, G. Engels, and M. Klenke, “Concept-based
engineering of situation-specific migration methods,” in ICSR’16, 2016,
pp. 199–214.

[13] C. Raibulet, F. Fontana, and M. Zanoni, “Model-driven reverse engineer-
ing approaches: A systematic literature review,” IEEE Access, vol. 5, pp.
14 516–14 542, 2017.

[14] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
Advanced Empirical Software Engineering. Springer, 2008, pp. 285–
311.

[15] C. Roy, J. Cordy, and R. Koschke, “Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach,” Sci.
Comput. Program., vol. 74, no. 7, pp. 470–495, 2009.

[16] A. Mooij and M. Voorhoeve, “Specification and generation of adapters
for system integration,” in Situation Awareness with Systems of Systems.
Springer, 2013, pp. 173–187.

[17] M. Voelter, DSL Engineering: Designing, Implementing and Using
Domain-Specific Languages. http://dslbook.org/: Online, 2013.

[18] M. Ward, “Pigs from sausages? Reengineering from assembler to C via
FermaT transformations,” Sci. Comput. Program., vol. 52, no. 1–3, pp.
213–255, 2004.

[19] R. Van Der Straeten, V. Jonckers, and T. Mens, “A formal approach
to model refactoring and model refinement,” Software and System
Modeling, vol. 6, no. 2, pp. 139–162, 2007.

[20] S. Wagner, A. Abdulkhaleq, K. Kaya, and A. Paar, “On the relationship
of inconsistent software clones and faults: An empirical study,” in
SANER’16, 2016, pp. 79–89.

[21] M. Schuts, J. Hooman, and F. Vaandrager, “Refactoring of legacy
software using model learning and equivalence checking: An industrial
experience report,” in IFM’16, 2016, pp. 311–325.

[22] H. Brunelière, J. Cabot, G. Dupé, and F. Madiot, “MoDisco: A model
driven reverse engineering framework,” Information & Software Tech-
nology, vol. 56, no. 8, pp. 1012–1032, 2014.

[23] P. Klint, T. van der Storm, and J. Vinju, “RASCAL: A Domain Specific
Language for source code analysis and manipulation,” in SCAM’09,
2009, pp. 168–177.

[24] G. Cosma and M. Joy, “An approach to source-code plagiarism detection
and investigation using latent semantic analysis,” IEEE Trans. Comput.,
vol. 61, no. 3, pp. 379–394, 2012.

[25] S. Grant and J. Cordy, “Vector space analysis of software clones,” in
ICPC’09, 2009, pp. 233–237.

[26] J. Andrews, “Testing using log file analysis: tools, methods, and issues,”
in ASE’98, 1998, pp. 157–166.

[27] A. Klusener, R. Lämmel, and C. Verhoef, “Architectural modifications
to deployed software,” Sci. Comput. Program., vol. 54, no. 2–3, pp.
143–211, 2005.

http://dslbook.org/

	Introduction
	Case Study: An Industrial Adapter
	Accidental Complexity
	Adapter Mappings and COM Technology

	The Redesign Process
	Reference Design
	Legacy Model Extraction
	Model Unfolding
	Model Refolding
	Code Generation and Code Construction
	Validation

	Automation in the Redesign Process
	Processing Industrial Code
	Model Transformation Technology
	Similarity Detection
	Test Suite Refinement Using Log Data

	Case Study: Effectiveness of the Redesign
	Threats to Validity
	Conclusions and Future Work
	References

